
 UNIVERSIDADE DE ÉVORA  

 ESCOLA DE CIÊNCIAS E TECNOLOGIA 

 DEPARTAMENTO DE BIOLOGIA 

 

UNIVERSIDADE DE LISBOA 

 INSTITUTO SUPERIOR DE AGRONOMIA   

 

 

Modeling the factors limiting the 
distribution and abundance of the 
European rabbit (Oryctolagus 
cuniculus) in SE Portugal 

 

Ana Marta Serronha 

Orientação: Pedro Monterroso 

Paulo Célio Alves 

 

 

 

Mestrado em Gestão e Conservação de Recursos Naturais 

 Dissertação 

 

 

 

Évora, 2014 

 



UNIVERSIDADE DE ÉVORA  

 ESCOLA DE CIÊNCIAS E TECNOLOGIA 

 DEPARTAMENTO DE BIOLOGIA 

 

UNIVERSIDADE DE LISBOA 

INSTITUTO SUPERIOR DE AGRONOMIA   

 

Modeling the factors limiting the distribution and 
abundance of the European rabbit (Oryctolagus 
cuniculus) in SE Portugal 

Ana Marta Serronha 

 

Orientação: Pedro Monterroso 

                      Paulo Célio Alves 

 

 

 

 

 

Mestrado em Gestão e Conservação de Recursos Naturais 

Dissertação 

 

 

 

Évora, 2014 

  



3 
 

AGRADECIMENTOS 

Em primeiro lugar quero agradecer ao meu orientador, Doutor Pedro Monterroso e ao meu co-

orientador, Professor Doutor Paulo Célio Alves, por me terem recebido e orientado durante todo 

este percurso. Obrigado pela amizade, ensinamentos e apoio constante em todas as fases da 

realização da tese, e ainda pela exigência e pelo incentivo no seu término.   

Agradeço ao Instituto da Conservação da Natureza e das Florestas pelo fornecimento de dados 

relativos à abundância de coelho-bravo. 

Agradeço também à Direção-Geral de Agricultura e Desenvolvimento Rural, e em especial ao Dr. 

Nuno do Rosário pelo fornecimento da Carta de Solos para o Alentejo e Algarve.  

Agradeço à Direcção-Geral dos Recursos Florestais, por me terem cedido as Cartas de Zonas de Caça 

para as regiões do Alentejo e Algarve.  

Ao Neftalí Sillero que, apesar de o trabalho com ele desenvolvido não estar directamente 

representado na tese, teve um importante contributo nos ensinamentos e desenvolvimento do inicial 

do trabalho. 

A todos os que permitiram a conclusão desta tese, com a sua indispensável ajuda e incentivo, em 

especial ao Luís Tinoco Faria, Miguel Salgado, Cátia Matos, Fátima Sanches, Sónia Ferreira e Sofia Vaz 

um muito e sincero obrigado! 

Um obrigado muito especial à minha amiga, colega e companheira de secretária Helena Santos, que 

sem ela a última etapa de conclusão da tese não teria sido ultrapassada. Obrigada pelas correcções, 

incentivo e ânimo!       

A todos os meus amigos, colegas e familiares que contribuíram indirectamente com incentivo e boa 

disposição um muito obrigada. 

A minha irmã Lígia, por todo o apoio, compreensão desde o início desta etapa um muito obrigada.  

Por fim agradeço aos meus pais, pelo incentivo e apoio incondicional não só na conclusão desta tese 

mas em todo o meu percurso académico, profissional e pessoal. Sem eles sem dúvida alguma que 

não teria alcançado esta meta. 

  



4 
 

Modelação dos factores que limitam a distribuição e abundância do Coelho-

bravo (Oryctolagus cuniculus) no SE de Portugal 

 

RESUMO 

O Coelho-bravo (Oryctolagus cuniculus) é uma espécie com um papel-chave nos ecossistemas 

Ibéricos. A sua distribuição e abundância são influenciadas por um elevado números de factores, que 

conjuntamente com a sua plasticidade, tornam a gestão das suas populações uma tarefa complexa. 

Este estudo tem como objectivo identificar os factores que limitam a distribuição e abundância das 

populações de Coelho-bravo no SE de Portugal, uma região que é prioritária para a conservação do 

Lince-ibérico. Os dados de campo consistiram num Índice Quilométrico (latrinas) de Abundância 

(IQA), ao qual modelos univariados e multivariados de regressão de quantis foram ajustados, usando 

diversas variáveis. Os resultados obtidos revelaram que as populações de Coelho-bravo são limitadas 

por factores ecológicos, climáticos e de gestão, e que variam de acordo com as áreas em estudo. Este 

estudo fornece informação relevante para a recuperação da população de Coelho-bravo, 

contribuindo consequentemente para o sucesso das reintroduções do Lince-ibérico. 
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ABSTRACT 

The European rabbit (Oryctolagus cuniculus) plays a key role in Iberian ecosystems. This species’ 

distribution and abundance is affected by a combination of several factors, and its high plasticity 

makes population management a challenging task. The main goal of this study is to identify the 

factors limiting the distribution and abundance of European rabbit populations in SE Portugal, a 

priority region for the Iberian lynx conservation. Field data consisted of a Kilometric Index of (latrine) 

Abundance (KIA), to which univariate and multivariate quantile regression models were fitted, using 

a diversity of variables. The obtained results revealed that European rabbits populations are limited 

by ecological, climatic and management factors, which varied across sampling areas. This study 

provides highly relevant information for European rabbit population recovery, consequently 

contributing for the success of Iberian lynx reintroductions. 
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GENERAL INTRODUCTION AND STUDY AREA 

The European rabbit (Oryctolagus cuniculus) is a native species to the Iberian Peninsula in 

southwestern Europe (Monnerot et al. 1994, Ferrand and Branco 2007). In the Quaternary 

glaciations, this lagomorph was confined in two areas of the Iberian Peninsula, one in the northeast 

and other in the southwest, after which recolonized the entire Peninsula and Europe (Branco et al. 

2000, Branco et al. 2002). Molecular evidences show that two subspecies, Oryctolagus cuniculus 

cuniculus and Oryctolagus cuniculus algirus occur in the northeast and in the southwest of the Iberian 

Peninsula, respectively (Branco et al. 2000, Ferrand and Branco 2007). Geographically, these two 

subspecies’ distributions follow a northwest-southeast direction dividing the Iberian Peninsula, with 

a small contact area in the middle (Branco et al. 2000, Ferrand and Branco 2007). In the Middle Age 

the European rabbit was introduced in the north of Europe, Africa, Australia, New Zealand, South 

America and in several islands, for food and hunting purposes (Ferrand and Branco 2007, Lees and 

Bell 2008). However, where the species was initially introduced, its’ high adaptability, reproduction 

rate, and the absence of predators turned the European rabbit into a pest, capable of causing 

damages in agriculture and natural vegetation, and endangering native plants and animals (Cooke 

2008, Lees and Bell 2008).  

 

a) b) 

Figure 1 – a) World European rabbit distribution. b) European and North African distribution of the European rabbit. 

The spatial data for European rabbit distribution was obtained from IUCN 2010. 
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The European rabbit is considered as an ecosystem engineer in the Mediterranean ecosystem 

(Delibes et al. 2007, Delibes et al. 2008a). It plays an important role affecting flora diversity and 

landscape structure through grazing and seed dispersal, and also soil fertilization through latrines 

(Willot et al. 2000, Dellafiore et al. 2006, Dellafiore et al. 2010). The European rabbit also affects 

animal biodiversity providing refuges for other species that use their warrens (e.g. Galante and 

Cartagena 1999, Bravo et al. 2009, Grillet et al. 2010). Moreover, one of its main roles in the 

Mediterranean ecosystems is as a staple prey in vertebrate predator-prey dynamics. The species 

represents a large part of the diet of several predators (Jaksic and Soriguer 1981, Delibes-Mateos et 

al 2007), including two of the most endangered species in the Iberian Peninsula, the Imperial eagle 

(Aquila adalberti) and the Iberian lynx (Lynx pardinus), whose survival depend on abundant and 

stable European rabbit populations (Ferrer and Negro, 2004). In addition to its high ecological 

importance, the European rabbit has a high economic value being one of the most appreciated small 

game species in Portugal and Spain (Angulo and Villafuerte 2003, Alves and Ferreira 2004, Delibes-

Mateos et al. 2014).  

The European rabbit’s populations have been declining since the 20th century. The decline started in 

the first half of the century apparently as a result of habitat loss and fragmentation (Delibes-Mateos 

et al. 2010), which was a consequence of the agriculture intensification and of the abandonment of 

traditional agricultural practices (Myers et al. 2000). Furthermore, the arrival of the Myxomatosis 

disease during the 1950s, and of the Rabbit Hemorrhagic Disease in the 1980s (RHD) accentuated the 

declined (Ratcliffe et al. 1952, Villafuerte et al. 1995, Calvete et al. 2002, Delibes-Mateos et al. 2008). 

Myxomatosis is an endemic disease to the South American rabbits (Syvilagus sp.) and was introduced 

in France in 1952 as a pest control for the European rabbits. The disease spread away quickly and 

was detected for the first time in the Iberian Peninsula in 1953 (reviewed in Kerr 2012).  Although 

information about the initial outbreak of Myxomatosis in the Iberia Peninsula is scarce, the disease 

probably had the same catastrophic effect as in England and France, killing about 99% of the 

European rabbit population (Fenner and Fantini 1999). The RHD was detected for the first time in the 

People’s Republic of China in 1984 and in the Iberian Peninsula in 1989. Initial mortality rates were 

estimated in 55–75% of the European rabbit population (Villafuerte et al. 1994, Villafuerte et al. 

1995). After the initial outbreaks, both Myxomatosis and RHD mortality rates started to decline as a 

consequence of higher physiological disease resistance of the European rabbit. However, both 

diseases continue to play an important role in the European rabbit’s mortality (Calvete et al. 2002). 

As a result of this decline, the European rabbit was classified as Near-Threatened and Vulnerable in 

the Portuguese and Spanish Red List of Vertebrates, respectively (Cabral et al. 2005, Villafuerte and 

Delibes-Mateos 2007).  The species was also classified with the Near-Threatened status at the 

international level (Red List of the IUCN; Smith and Boyer 2008).  



11 
 

A new variant of the Rabbit Hemorrhagic Disease Virus (RHDV2) was recently detected in Europe 

exhibiting high mortality rates (Marchandeau 2014, personal communication). This new variant was 

detected for the first time in April 2010 in France, May 2011 in Spain and June 2011 in Italy (Le Gall-

Reculé et al. 2013). In November 2012 the new variant of the RHDV was detected in Portugal (Alves 

2014, personal communication). This variant differs from the traditional strain because it affects the 

young rabbit population, causing mortality in kits <30 days of age (Dalton et al. 2012) and in juveniles 

<2 months of age (Abrantes et al. 2013). Therefore, the recruitment of new individuals to the 

population becomes highly constrained, compromising the persistence of several European rabbit 

populations. The new variant of RHDV spread rapidly and with stronger outbreaks than the classic 

RHDV (Abrantes et al. 2013, Le Gall-Reculé et al. 2013). Le Gall-Reculé et al. (2013) suggested that 

this new variant is a new member of Lagovirus, producing disease with different duration, mortality 

rates, and higher occurrence of subacute/chronic forms, and recommended the RHDV2 name. As a 

consequence, the Iberian European rabbit population has been declining, causing high impacts on 

the ecological and socio-economic levels (Garrote 2014, personal communication).  

Native to the Iberian Peninsula, the Iberian lynx is considered the most endangered feline on earth, 

and has suffered a steep decline in the second half of the 20th century (Simón et al. 2012). This decline 

is a consequence of intensive human persecutions, habitat loss, and decrease in European rabbit 

populations (Simón et al. 2012). Presently, the Iberian lynx is only found in two isolated native 

populations in southern Spain. Therefore, an important conservation program has been developed 

to preserve its populations, but also the Iberian lynx historical areas of distribution. In this context, 

the LIFE+ Iberlince (LIFE10 NAT/ES/000570/IBERLINCE) program for the recovery of the Iberian lynx’s 

historical distribution range was approved for Portugal and Spain in 2011. The present program aims 

to re-establish extinct populations through habitat and prey management, followed by 

reintroduction in areas with high priority level for Iberian lynx conservation. Therefore, promoting 

the recovery of rabbit populations is of utmost importance for the successful restocking of the Iberian 

lynx populations. 

In this context, the main goal of this study is to assess which factors are limiting the distribution and 

abundance of European rabbit population in SE Portugal, an important area for Iberian lynx 

reintroduction by: 

 a) Identifying the factors limiting the abundance and distribution of European rabbits in a high-

priority region for Iberian lynx conservation in Portugal; 

b) Evaluating the effectiveness of quantile regression techniques in a wildlife conservation scenario, 

when compared to traditional regression methods;  

c) Predicting the spatial distribution of the most suitable areas for European rabbits in the SE of 

Portugal, by projecting the developed models;  
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d) Proposing specific management guidelines for the conservation of the European rabbit. 

 

The study area is encompassed in the Alentejo and Algarve regions, which are included in the 

historical range of the Iberian lynx. It comprises five protected natural areas with high conservation 

level for the Iberian lynx (LIFE10 NAT/ES/000570/IBERLINCE, ICNF 2006a, ICNF 2006b): the Guadiana 

Valley Natural Park (GVNP), the Natura 2000 Network Site Moura-Barrancos (PTCON0053), the 

Natura 2000 Network Site Guadiana (PTCON0036), the Natura 2000 Network Site Caldeirão 

(PTCON0057) and the Natura 2000 Network Site Monchique (PTCON0037) (figure 2). Due to 

overlapping, and similarity, the GVNP and Natura 2000 Network Site Guadiana were merged in the 

present study, for analyses purposes. 

The study area comprises a total of 773,600ha and is included in the biogeographic Mediterranean 

region in the Mariânico-Monchiquense sector (Costa et al. 1998). The climate is Mediterranean with 

annual mean temperature between 17.5° and 20°C, and with a mean annual precipitation between 

400 and 1000 mm (ICA 2011). The soils are dominated by lithosols over the entire study area. The 

topography is heterogeneous with altitudes ranging from 2 to 706m a.s.l. Lower altitudes are mostly 

represented in northwest, and higher altitudes in southwest of the study area. At flat areas the 

landscape is mainly characterized by the agroforestry system commonly known as “montado”, an 

open tree layer with Cork oak (Quercus suber) and/or Holm oak (Q. rotundifolia) (Joffre et al. 1999), 

included in the Annex 1 Habitat type 6310 (Habitat Directive 92/43/EEC). Patches of cereal croplands, 

permanent crops (e.g. olive groves Olea europaea, vineyards Vitus vinifera) and forested mosaics of 

Stone pine (Pinus pinea; mainly directed to forestry) are also represented. Natural vegetation patches 

are mostly present in steep slopes and ridges, represented by Mediterranean scrublands, and in 

valleys associated with watercourses represented by riparian vegetation. In the southwestern region, 

the landscape is mainly occupied by forestry mosaics of Maritime pine (Pinus pinaster) and 

Eucalyptus (Eucalyptus globulus).  
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The study area is also included in the Mediterranean basin biodiversity hotspot (Myers et al. 2000, 

Pascual et al. 2013), and includes the most important ecological corridor of southern Portugal, the 

Guadiana River basin, harboring more than 220 species of breeding vertebrates (WWF international). 

The hunting activity has an important socio-economic role in the study area, where hunting estates 

are present in 88% of the study area. The Red-partridge (Alectoris rufa) and the European rabbit are 

the most appreciate small game species in the area. 

 

Figure 2 – Map of the study area with the Natural Protected Areas with importance for 

Iberian lynx reintroduction.   
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ABSTRACT: The European rabbit (Oryctolagus cuniculus) plays a key role in Iberian ecosystems. This 

species’ distribution and abundance is affected by a combination of several factors, and its high 

plasticity makes population management a challenging task. The main goal of this study is to 

identify the factors limiting the distribution and abundance of European rabbit populations in SE 

Portugal, a priority region for the Iberian lynx conservation (Lynx pardinus). Field data consisted of a 

Kilometric Index of (latrine) Abundance (KIA), to which univariate and multivariate quantile 

regression models were fitted, using a diversity of variables. The obtained results revealed that 

rabbits populations are limited by ecological, climatic and management factors, varying across 

sampling areas. This study provides highly relevant information for European rabbit population 

recovery, consequently contributing for the success of Iberian lynx reintroductions. 

 

KEYWORDS: Oryctolagus cuniculus, quantile regression model, limiting factors, Lynx pardinus. 

 

INTRODUCTION 

The European rabbit (Oryctolagus cuniculus) is a native species to the Iberian Peninsula (Monnerot 

et al. 1994, Ferrand and Branco 2007) and plays a key role in the Mediterranean ecosystem (Delibes-

Mateos et al. 2007, Delibes-Mateos et al. 2008a). It is responsible for flora diversity and landscape 

structure through grazing and seed dispersal (e.g. Dellafiore et al. 2006, Dellafiore et al. 2010). 

Moreover, European rabbits affect animal biodiversity providing nest sites and shelter for other 

species that use their warrens (e.g. Bravo et al. 2009, Grillet et al. 2010). The European rabbit is also 

considered a key species in the vertebrate predator-prey dynamics, constituting a large part of the 

diet of a diversity of predators (Jaksic and Soriguer 1981, Delibes-Mateos et al. 2007), including the 

two most endangered species, the Imperial eagle (Aquila adalberti) and Iberian lynx (Lynx pardinus), 

whose survival depend on abundant and stable populations of this species (Ferrer and Negro 2004). 
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Since the last century, the European rabbit populations have declined significantly across the Iberian 

Peninsula. Two major factors have been responsible for this steep reduction, the habitat loss and 

fragmentation (Delibes-Mateos et al. 2010) and the diseases Myxomatosis and Rabbit Haemorrhagic 

Disease (RHD) (Ratcliffe et al. 1952, Villafuerte et al. 1995). As a result of this decline, the European 

rabbit was classified as Near-Threatened and Vulnerable in the Portuguese and Spanish Red List of 

Vertebrates, respectively (Cabral et al. 2005, Villafuerte and Delibes-Mateos 2007).  The species was 

also classified with the Near-Threatened status at the international level (Red List of the IUCN; Smith 

and Boyer 2008). 

Currently, another viral disease was identified in Europe with high impacts on European rabbit 

populations. The disease is a new variant of Rabbit Hemorrhagic Disease Virus (RHDV) and was 

detected for the first time in 2012 in Spain and in 2013 in Portugal. This new variant of RHDV, differs 

from the traditional strain since it affects the young rabbit population, causing mortality in kits <30 

days of age (Dalton et al. 2012) and in juveniles <2 months of age (Abrantes et al. 2013), which 

compromises the recruitment of new individuals to the population.  The new variant of RHDV also 

spreads more rapidly and produces stronger outbreaks than the classic RHDV (Abrantes et al. 2013, 

Le Gall-Reculé et al. 2013). 

Several factors other than epizootic outbreaks contribute to the distribution and abundance of the 

European rabbit populations. In general, European rabbit distribution and abundance is affected by 

a combination of factors such as soil features, climate, landscape vegetation patterns, topography, 

hunting, and predation pressure (Trout et al. 2000, Lombardi et al. 2003, Monzón et al. 2004). 

However, the high plasticity of European rabbits and the diversity of factors that affect it make the 

management of their populations a challenging task.  

Several authors have developed ecological models of European rabbits’ distribution in introduced 

(e.g. Trout et al. 2000) and native areas (e.g. Virgos et al. 2003, Calvete et al. 2004), attempting to 

identify the environmental factors that shape the observed spatial patterns. However, such models 

revealed limited performance due to the limited explained variability (e.g. Virgos et al. 2003, Calvete 

et al. 2004), or small spatial extent, preventing their transferability (e.g. Moreno and Villafuerte 1995, 

Fa et al. 1999, Martins et al. 2003, Monzón et al. 2004, Beja et al. 2007).  

An alternative to the most commonly used statistical methods in ecological modeling (e.g. PCA, linear 

regression, general linear models) is the quantile regression (Koenker and Basset 1978), which 

provides a different view of the factors influencing distribution and abundance (Cade and Noon 2003, 

Austin 2007). Quantile regression has been described as an useful tool in several research fields such 

as medicine, financial and economics, as well as in environmental modeling (reviewed in Yu et al. 

2005). However, in spite of being suitable in providing a more complete view of the data distribution 

and detecting missing relationships between the response and explanatory variables (Cade et al. 
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1999, Cade and Noon 2003), this statistical approach is still scarcely applied in ecological research 

(e.g. Cade and Guo 2000, Haire et al. 2000, McClain and Rex 2001, Dunham et al. 2002, Eastwood et 

al. 2001, 2003, Schröder et al. 2005, Vaz et al. 2008, Fleeger et al. 2010). Conventional statistic 

methods only focus on the mean (central tendency) response of the relationship between the 

dependent and explanatory variables. Therefore, they may underestimate the effect of the 

explanatory variables and only provide a general direction of the response (Thomson et al. 1996, 

Scharf et al. 1998, Cade et al. 1999). In contrast, quantile regression is a method used to model the 

relation between the dependent variable and the explanatory variables along the entire dataset, 

where a trendline is adjusted for each τ quantile [0, 1] of the data distribution (Cade et al. 1999). This 

method is useful for finding relationships that other regression methods, which focus in the center 

of the data distribution, cannot detect (Koenker and Bassett 1978, Cade and Noon 2003). Additional 

advantages of quantile regression models include the fact that variance homogeneity of the error 

distribution is not needed and it is robust to outliers (Cade et al. 1999, Cade and Noon 2003). Since 

quantile regression is useful to assess data distributions with heterogeneous variance, this method 

can be used to account for possible interactions between measured and unmeasured factors (Cade 

and Noon 2003). This is particularly valuable in the case of European rabbits because their traits are 

often affected by unmeasured factors (Trout et al. 2000). For regressions for higher quantiles (50th to 

99th), it is possible to model the upper limit of the data distribution, and understand the maximum 

biological response of the dependent variable. With this information it is possible to detect which 

variables are limiting the distribution of the data range (Cade et al 1999, Cade and Noon 2003). The 

limiting factor cannot be assessed by conventional statistic methods with focus on central tendency 

and, therefore, the regression quantile is a proper method to address such ecological questions 

(Thomson et al. 1996). Moreover, upper quantile regression models are able to predict species’ 

spatial patterns (Eastwood et al. 2001, Vaz et al. 2008), providing a representation of the potential 

suitable or unsuitable areas for the target species. 

In addition to its high ecological importance as a key species in the Mediterranean ecosystems, the 

European rabbit has also a high socioeconomic value being one of the most appreciate small game 

species in Iberian Peninsula (Angulo and Villafuerte 2003, Alves and Ferreira 2004, Delibes-Mateos 

et al. 2014). Due to its steep decline in the last decades, population management of the European 

rabbit abundance and distribution has increased, serving both conservation and socioeconomic roles. 

With this purpose, understanding which variables are limiting the distribution and abundance of 

European rabbit populations in the Iberian Peninsula is an important goal.  

Considered as a super-specialist predator, Iberian lynx survival depends on abundant and stable 

European rabbit populations.  This prey abundance should be at least 4 rabbits/ha in during breeding 

season (spring) and 1 rabbit/ha in the autumn to support an Iberian lynx population (Palomares 
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2001). A conservation program to recover the Iberian lynx natural populations is currently ongoing 

in the Iberian Peninsula, LIFE+ Iberlince (Recovering the historic distribution range of the Iberian lynx 

(Lynx pardinus) in Spain and Portugal - LIFE10 NAT/ES/000570/IBERLINCE).  That program aims to 

recover extinct populations through habitat and prey management followed by reintroduction in 

areas with high priority level for Iberian lynx conservation. In southeast Portugal, an extent target 

area includes four areas with high-priority level.  Each of these high-priority areas include several 

hunting estates where European rabbit is one of the most appreciate small game species. In order to 

avoid conflict between hunters and conservationists, increasing European rabbit abundance is of 

utmost importance (Delibes-Mateos et al. 2014). Therefore, promoting the recovery of rabbit 

populations is a major concern for successful restocking of the Iberian lynx. The first step is to 

understand which factors are limiting the European rabbit distribution and abundance, and identify 

the areas with highest constrains to population recovery in order to implement locally adjusted 

management actions. In this context, the main goal of this study is to assess which factors are limiting 

the distribution and abundance of the European rabbit populations in SE Portugal, an important area 

for the Iberian lynx reintroduction, trough: a) identifying the factors limiting the abundance and 

distribution of European rabbits in a high-priority region for Iberian lynx conservation in Portugal; b) 

evaluating the effectiveness of quantile regression techniques in a wildlife conservation scenario, 

when compared to traditional regression methods; c) predicting the spatial distribution of the most 

suitable areas for European rabbits in the SE of Portugal, by projecting the developed models; d) 

proposing specific management guidelines for the conservation of the European rabbit. 

  

METHODS 

Study area 

The study was carried out in southeast Portugal (38°25’16’’N, 7°15’31’’W to 37°11’22’’N, 8°31’36’’W; 

figure 1) in an area of 773,600ha. The area is included in the Mediterranean biogeographic region in 

the Mariânico-Monchiquense sector (Costa et al. 1998), with mean annual temperature between 

17.5° and 20°C, and mean annual precipitation between 400 and 1000mm (ICA 2011). 

The soils are dominated by lithosol soils over the entire study area. The topography is heterogeneous 

with altitudes ranging from 2m to 706m a.s.l. Lower altitudes are mostly represented in northwest, 

and higher altitudes in southwest of the study area. At flat areas the landscape is mainly characterized 

by the agroforestry system commonly known as “montado”, an open tree layer with Cork oak 

(Quercus suber) and/or Holm oak (Q. rotundifolia) (Joffre et al. 1999), included in the Annex 1 Habitat 

type 6310 (Habitat Directive 92/43/EEC). Patches of cereal croplands, permanent crops (e.g. olive 
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groves Olea europaea, vineyards Vitus vinifera) and forested mosaics of Stone pine (Pinus pinea; 

mainly directed to forestry) are also represented.  

Natural vegetation patches are mostly present in steep slopes and ridges, represented by 

Mediterranean scrublands, and in valleys associated with water courses represented by riparian 

vegetation. At the southwestern region, the landscape is mainly occupied by forestry mosaics of 

Maritime pine (Pinus pinaster) and Eucalyptus (Eucalyptus globulus). 

The study area is included in the Mediterranean basin biodiversity hotspot (Myers et al. 2000, Pascual 

et al. 2013), where the European rabbit is an important prey for more than 30 species (Jaksic & 

Soriguer 1981, Delibes-Mateos et al. 2007), including the endangered Imperial eagle (Aquila 

adalberti) and Iberian lynx (Lynx pardinus) (Ferrer and Negro 2004). Given the study area’s strategic 

importance for wildlife conservation in the south of the Iberian Peninsula, particularly for the 

conservation of the Iberian lynx, it was included as a target region for the reintroduction program in 

the LIFE+ Iberlince (Recovering the historic distribution range of the Iberian lynx (Lynx pardinus) in 

Spain and Portugal - LIFE10 NAT/ES/000570/IBERLINCE). The study area includes five classified areas 

with high conservation level for this species (LIFE10 NAT/ES/000570/IBERLINCE, ICNF 2006a, ICNF 

2006b): the Guadiana Valley Natural Park (GVNP), the Natura 2000 Network Site Moura/Barrancos 

(PTCON0053), the Natura 2000 Network Site Guadiana (PTCON0036), the Natura 2000 Network Site 

Caldeirão (PTCON0057) and the Natura 2000 Network Site Monchique (PTCON0037). Due to 

overlapping, and similarity, the GVNP and Natura 2000 Network Site Guadiana were merged in the 

present study, for analyses purposes. 

Apart from its ecological importance, the European rabbit plays an important socio-economic role, 

since it is one of the most appreciated small game species in the Iberian Peninsula (Delibes-Mateos 

2014) particularly in this study area, where hunting estates are present in 88% of the study area. 
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Figure 1 – Map of the study area with the 2x2 square units assessed with latrine counts and with 

the Natural Protected Areas with importance for Iberian lynx reintroduction.   
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Field sampling 

Distribution and abundance of the European rabbit’s study followed the Portuguese monitoring 

methodology, developed by the project “INCOB – Information System for European Rabbit 

Populations”. The INCOB project was part of the Wild Rabbit Recovery Program (in Portuguese, 

PRECOB; Portuguese Law issue nº 296/2007, 8-01) which aimed to create a standard method for 

collecting data to assess the abundance and distribution of European rabbit populations in Portugal 

(Ferreira and Delibes-Mateos 2010).  The method is based on latrine counts, which is commonly used 

to evaluate the distribution and abundance of European rabbits (reviewed in Ferreira and Delibes-

Mateos 2010). This method can be efficiently applied to large areas in a short period of time, 

producing satisfactory abundance estimates, highly correlated to other estimation methods (Iborra 

and Lumaret 1997, Campbel et al. 2004). Latrines have a territorial and social function in rabbit 

ecology and can be deposited by single individuals or family groups (Sneddon 1991). Latrine was 

defined as any group of > 20 pellets in a circle with a <30cm2 area (Virgós et al. 2003). 

A sampling grid of 2×2km UTM (Universal Transverse Mercator) square units (Sarmento et al. 2012), 

with a total of 1934 squares, was superimposed over the study area, and approximately 25% of these 

squares were sampled. The sampled squares were selected to include the 4 natural protected areas 

referred above. Four 500m long transects were defined in each sampled square (one per quadrant). 

All transects were selected in areas with suitable habitat for the European rabbit, along trails 

(Delibes-Mateos et al. 2008b). Two observers walked the transect side-by-side, and counted the 

number of latrines within a 6-m-wide band (3 m on each side covered by each observer) along the 

transect. The geographic location of all transects and of each latrine was registered in a handheld 

portable GPS (global positioning system) navigator.  

A Kilometric Index Abundance (KIA) was calculated for each transect and for each sampled square 

using the following formula: 

 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1:               𝐾𝐼𝐴𝑡 =
𝑙𝑎𝑡×1000

𝑡𝑙
  

 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎 2:               𝐾𝐼𝐴𝑠 =
∑ 𝐾𝐼𝐴𝑡𝑛

𝑖=1

𝑛
  

where KIAt - Kilometric Index Abundance for each transect; KIAs - Kilometric Index Abundance for each samples square; 

lat - number of rabbit latrines detected in a transect; tl – transect length (500m); n – number of transects in each sampled 

square. 

 

The field sampling was conducted during June and July 2010, a period that corresponds to the highest 

density of European rabbit, at the end of the breeding season (Gonçalves et al. 2002); before the 
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seasonal outbreaks of myxomatosis and rabbit viral hemorrhagic disease (Calvete et al. 2002, Calvete 

et al. 2006); and before the hunting period (Decree-Law n. º 2/2011 of January 6).  

 

Explanatory variables  

Six sets of potential variables related to European rabbit distribution and abundance were evaluated: 

aspect, topographic, climatic, land cover, soil, and hunting management (table 1). Aspect and 

topographic variables provide different microclimatic conditions and can act as a movement barrier 

(Trout et al. 2000, Calvete et al. 2004). Climate conditions can affect the physiological conditions of 

the European rabbit, the vegetation structure and the water availability (reviewed in Delibes-Mateos 

et al. 2009). Land cover is related with food and shelter availability (Virgos et al. 2003, Delibes et al. 

2008b). Soil type can influence the digging capacity (Virgos et al. 2003, Delibes-Mateos et al. 2008b) 

and the type of vegetation for food and shelter (Virgos et al. 2003, Ferreira and Alves 2009). Hunting 

management can directly affect the abundance of the species but also the availability of food, shelter 

and abundance of predators (Delibes-Mateos et al. 2008b).  

 
Aspect variables 

To calculate the aspect (slope direction), the global digital elevation model (GDEM) grid was first 

obtained from the ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer; 

http://gdem.ersdac.jspacesystems.or.jp/) with a resolution of 30x30m. The aspect grid was created 

over the GDEM grid with the extension DEM Surface Tools for ArcGIS10, and was classified into nine 

categorical directions with 45°, plus one class with no direction corresponding to flat areas (table 1) 

(Jenness 2012). The total area (ha) occupied by each aspect class within each sampled 2x2 square 

was calculated with ArcGIS10 tools. 

 

Topographic variables 

Topographic variables were obtained using the previously described GDEM grid. A topographic 

position index (TPI) grid was calculated as the difference between each cell’s elevation and the 

average elevation of the surrounding cells (Jenness et al. 2012). This calculation was performed with 

the extension Land Facet Corridor for ArcGIS10 with a 60m circular neighborhood (Jenness et al. 

2012). The TPI grid was classified in six topographic classes (table 1) according to Jenness et al. (2012). 

The total area occupied by each TPI class within each sampled 2x2 square was calculated with 

ArcGIS10 tools. 

 

 

http://gdem.ersdac.jspacesystems.or.jp/
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Climatic variables  

Six climatic grids were obtained from the Digital Climatic Atlas of the Iberian Peninsula 

(http://opengis.uab.es/wms/iberia/en_index.htm) with a resolution of 300x300m. Precipitation, 

radiance, annual mean, annual maximum and annual minimum temperatures corresponded to the 

mean values for 2010 (table 1). Maximum temperature for July was also taken as a variable, 

representing the highest values registered for this month. The mean value by each climatic variable 

within each sampled 2x2 square was estimated with ArcGIS10 tools. 

 

Land cover variables 

Land cover variables were obtained from the land cover vector dataset (COS 2007 level 2; IGEOE 

2010, http://www.igeo.pt) with 15 classes and a minimum mapping unit of 1ha (IGEOE 2010). The 

original dataset was reclassified into 8 ecologically relevant classes for the European rabbit, based on 

the published literature (Moreno et al. 1996, Lombardi et al. 2003, Virgos et al. 2003, Calvete et al. 

2004, Ferreira and Alves 2009): artificial areas, represented by humanized areas; temporary crops, 

represented by crops with rotation system; permanent crops, represented by crops without a 

rotation system (e.g. olive groves, vineyards);  pastures, represented by herbaceous species; 

heterogeneous agricultural areas, represented by annual crops with permanent crops on the same 

area, mixed with pastures and natural vegetation; forests, represented by forests and woodlands 

composed by coniferous and/or deciduous trees; open forest with shrub and/or herbaceous 

vegetation association, and open areas with little and/or sparse vegetation, represented by open 

areas with shrubs and herbaceous cover. The total area occupied by each land cover class within each 

sampled 2x2 square was calculated with ArcGIS10 tools. 

 

Soil variables 

Soil variables were obtained from a 1:25,000 scale vector, provided by the Portuguese General 

Direction of Agriculture and Rural Development (DGADR; http://www.dgadr.mamaot.pt) and follow 

the Portuguese soils classification (ISA, 2014). The classes recorded for the study area were 

reclassified into 13 classes, according to hardness, compaction and deepness soil features: rock 

outcrop, represented by areas of rocky formation exposed above the surface of the surrounding land; 

aluviosoils, represented by young and moist soils, formed on the slopes by deposition with a 

groundwater course bellow; clays, represented by mature, compacted, and easily collapsed; 

lithosols, represented by young soils with less than 10cm deep; calcareous soils, represented by low 

mature acid soils, with a median-high texture; halomorphic, hydromorphic and turfs, represented by 

wet or moist soils, temporarily or permanently flooded by water; litholic soils, represented by young 

soils with humus; mediterranean soils, represented by five classes of mature soils with different 

http://opengis.uab.es/wms/iberia/en_index.htm
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compositions (calcareous, clays or hydromorphic); and artificial areas, represented by humanized 

areas. The total area occupied by each soil class within each sampled 2x2 square was calculated with 

ArcGIS10 tools. 

 

Hunting estates variables 

Hunting estates variables were obtained from a 1:25,000 scale vector, provided by the Portuguese 

Directorate-General of Forest Resources (DGFR).  Six classes of hunting management were 

considered for the study: unmanaged, associative hunting estates, municipal hunting estates, 

national hunting estates, tourist hunting estates and non-hunting estates.  The national and 

municipal hunting estates are managed by Portuguese Government and municipalities, respectively.  

The associative and touristic hunting areas have private management, by local hunting associations 

and by private stakeholders, respectively. The non-hunting class represents the areas were the 

hunting activity is prohibited, and the unmanaged class represents areas without hunting 

management. The vector was converted into a grid format with a resolution of 300x300m. The total 

area occupied by hunting class within each sampled 2x2 square was calculated with ArcGIS10 tools. 

 

Type Variable range 
% in the 

study area 
Code 

Aspect 

flat* -1 1.50% A1 

northeast* 22.5 – 67.5 3.16% A2 

north* 0 – 22.5 22.80% A3 

north2 337.5 – 359.7 16.15% A4 

northwest* 292.5 – 337.5 2.76% A5 

southeast 112.5 – 157.5 2.80% A6 

east 67.5 – 112.5 21.80% A7 

south* 157.5 – 202.5 4.14% A8 

southwest* 202.5 – 247.5 3.14% A9 

west* 247.5 – 292.5 21.74% A10 

Topography 

valleys* TPI <= -1 10.42% T1 

lower slopes -1 < TPI < -0.5 15.78% T2 

gentle slopes 
 -0.5 < TPI < 0.5 

and slope <= 5 
2.34% T3 

steeps slopes 
-0.5 < TPI < 0.5 

and slope > 5 
45.04% T4 

uppers slopes* 0.5 < TPI < 1 16.55% T5 

ridges TPI >= 1 9.87% T6 

Table 1 – Variables extracted and used for statistical analysis.  *variables selected after Spearman’s rank correlation. 
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Climatic 

annual mean precipitation (mm) 3538 – 11926  C1 

annual maximum temperature (°C)* 20.5 – 24.3  C2 

July maximum temperature (°C)* 30.9 – 36.4  C3 

annual mean temperature (°C)* 15.0 – 18.4  C4 

annual minimum temperature (°C)* 8.2 – 12.9  C5 

annual mean radiance (kWh m−2 day−1) 1552 –2297  C6 

Land cover 

artificial areas  0.92% L1 

temporary crops  15.09% L2 

permanent crops  6.51% L3 

pastures  4.64% L4 

heterogeneous agricultural areas*  15.27% L5 

coniferous and deciduous forests  12.05% L6 

open forest with shrub and/or herbaceous vegetation 

association, and open areas with little and/or sparse 

vegetation* 

 41.53% L7 

water bodies  1.35% L8 

Soil 

rock outcrop  0.89% S1 

aluviosoils  0.98% S2 

clays*  1.46% S3 

lithosols soils*  60.27% S4 

calcareous soils*  2.76% S5 

halomorphic, hydromorphic and turf soils*  0.74% S6 

Litholic soils  1.52% S7 

mediterranean brown calcareous semi-clay and 

mediterranean red calcareous semi-clay soils* 
 1.10% S8 

mediterranean browns non-calcareous normal and 

mediterranean reds non-calcareous normal soils* 
 23.43% S9 

mediterranean browns non-calcareous semi-brown and 

mediterranean red non-calcareous semi-brown soils 
 0.40% S10 

mediterranean brown non-calcareous semi-

hidromorphic and mediterranean red non-calcareous 

semi-hidromorphic soils* 

 0.93% S11 

mediterranean reds calcareous normal soils*  2.30 S12 

artificial areas   0.69% S13 

Hunting 

estates 

unmanaged estates*  1.18% H1 

associative hunting estates  51.19% H2 

municipal hunting estates  7.75% H3 

national hunting estates*  0.60% H4 

tourist hunting estates*  29.37% H5 

non-hunting estates  0.96% H6 
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Data analysis 

Preliminary analyses  

In order to reduce the possible correlation effect between the extracted variables (48 variables), the 

Spearman’s rank correlation was calculated (Zar 1999) between explanatory variables. For each 

significantly correlated (p<0.05) pair of variables, the one with the highest correlation with the 

dependent variable (KIA) was selected. To further reduce the number of explanatory variables, and 

to construct independent sets of variables that characterize the landscape structure (Trout et al. 

2000), a principal component analysis (PCA) was performed. The most contributive components (i. 

e., the ones that explain most of the variability of the data) were retained for further analyses, 

following the Kaiser Criterion, where components with eigenvalue greater than 1.0 were retained. A 

rotation of the principal component matrix was carried on to identify the most contributive set of 

variables for each component. The variables with the highest loadings (>0.3) for each component 

were considered as the most contributive for that particular component. 

 

Quantile regression models 

Quantile regression (QR) is a regression method used to model the relation between the dependent 

variable and the explanatory variables along the entire dataset, where a trendline is adjusted for each 

τ quantile [0, 1] of the data distribution (Cade et al. 1999). For regressions for higher quantiles (50th 

to 99th), it is possible to model the upper limit of the data distribution, and understand the maximum 

biological response of the dependent variable. With this information it is possible to detect which 

variable (or set of variables) is limiting the distribution of the data range (Cade et al 1999, Cade and 

Noon 2003).  

To assess the individual relationship between each explanatory variable and the dependent variable, 

univariate regression quantile models were fitted. A multivariate regression model was assessed to 

identify the most significant set of variables with the KIA. 

 

Univariate models 

Linear quantile regressions were performed for the dependent variable KIA using each principal 

component (PC) as explanatory variable. In order to assess the relationships at different levels of the 

data distribution, the regression was computed for thirteen quantiles: 0.10, 0.20, 0.30, 0.40, 0.50, 

0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 0.99. A rank-inversion test was performed to generate the 

confidence intervals of the regressions (Koenker, 2012). It was considered that the explanatory 

variable influenced the response variable when the rate of change (slope) was significantly different 

from zero. The significance of the relationships between KIA and PC for each quantile were tested 
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(H0: slope=0) with the rank-score test with the probabilities evaluated as the χ2 distribution (Koenker 

and d’Orey 1994). 

The quantile regression models were evaluated with the coefficient goodness-of-fit 𝑅1 , which is 

based on minimizing the sum of weighted distances for each quantile, using the formula: 

 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎 3)                𝑅1 = 1 − 𝐹(𝜏) 𝑅(𝜏)⁄   

where,  𝐹(𝜏) is the weighted sum of absolute deviations minimized in a full model, 𝑅(𝜏) is the weighted sum 
of absolute deviations minimized in a null model, for a 𝜏 quantile. 

 

Limiting factors (the principal components) were identified at the highest significant quantile (𝑝 <

0.05), in each set of regression quantile. 

An ordinary univariate least squares regression model was also fitted between KIA and each PCA 

components for comparative purposes with quantile regression. These models were assessed using 

the coefficient of determination (𝑅2; e.g. Baur et al. 2004, Munir et al. 2012). 

 

Multivariate models 

Multivariate quantile regression models were performed between the dependent variable (KIA) and 

explanatory variables (PCs) for each quantile of the data distribution. Multivariate models were 

performed for upper quantiles (≥0.7), with the main goal of assessing the factors limiting European 

rabbit populations (KIA).  

An initial full model was fitted with the most contributive principal components (principal 

components with eigenvalue greater than 1.0) as explanatory variables, for each quantile separately 

(0.7, 0.75, 0.8, 0.85, 0.9, 0.95 and 0.99). Then, it was applied a backward stepwise elimination 

procedure, whereby the principal component with the highest non-significant  𝑝 − 𝑣𝑎𝑙𝑢𝑒 was 

removed in each step, until all variables in the model had significant effect (Vaz et al. 2008). The 

variables’ significance was tested with the rank-score test (Koenker and d’Orey 1994). 

From the seven final models (one for each quantile), only one was selected as the multivariate final 

model to assess the limiting factors for the European rabbit populations (KIA).  Since the currently 

existing goodness-of-fit tests did not correctly apply to our study, was selected the model for the 

highest quantile, in which all the variables were statistically significant (𝑝 < 0.05) in univariate 

models. 

Models’ validation was performed with a Spearman correlation rank between the selected model 

and the KIA dataset.  
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The selected model was projected for the entire study area using ArcGIS 10 (®ESRI). For each 

protected area, the limiting set of variables was assessed through the principal components mean 

values. 

All analyses were performed in R (R Development Core Team 2008). Spearman correlation and PCA 

were performed using the stats package. Quantile regressions and rank inversion tests were 

performed using the quantreg package, a library for quantile regression analyses (Koenker 2008). 

 
 

RESULTS 

Preliminary analyses 

A total of 26 variables (51.4% of the initial set) was selected for further analyses after the Spearman’s 

rank correlation test (table 1).  

The first eight components of the PCA, eigenvalues>1 (figure 2), explained a total of 68% of the 

variability of the dataset. The first component (PC1) had the highest contribution, accounting for 18% 

of the total variability, followed by the second and third components, which explained 11% and 10%, 

respectively.  The following components (PC4 to PC8) have the lowest contributions (less than 10%).   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The variables that contributed the most for PC1 (figure 3, table 2) had all positive loadings in the 

component structure, and comprise three climatic variables: annual minimum temperature (C5), 

annual mean temperature (C4) and annual maximum temperature (C2); one land cover variable: 

open forest with shrub and/or herbaceous vegetation association and open areas with little and/or 

sparse vegetation (L7); and one soil type: lithosol soils (S4). The second component (PC2) also consists 

in two climatic variables: annual maximum temperature, annual mean temperature (C2 and C4); and 

Components 

1 2 3 4 5 6 7 8 9 10 

1 

2 

3 

4 

5 

Eigenvalues 

Figure 2 – Screeplot representing the variability explained (eigenvalues) by the first 10 components of the Principal 
Components Analysis. The 1st to the 8th component have eigenvalues >1. Dashed line – eigenvalue =1. 
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one aspect variable: flat (A1), all with positive loadings (table 2), whereas the hunting estate variable, 

national hunting area (H4), showed negative loadings for this component (figure 3). The composition 

of the remaining components is described in the table 2. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Univariate quantile regression models 

The univariate quantile regression models showed that the principal components have different 

effects on the relative abundance of European rabbit (KIA), and that also this effect changes between 

different quantiles (figure 4 and 5).  

In all principal components (PC1 to PC8) the regressions along the quantiles have different intercept 

values and different slopes (see figure 1 to 8 of Appendix), suggesting that the included variables did 

not explain all the data variability by themselves.  

For PC1 (figure 4 and 5), the slopes of quantile regressions were significantly positive (𝑝 < 0.05) for 

all quantiles up to the 99th quantile, and the rate of change (slope) increased towards the higher 

quantiles (see also table 4 to 11 of Appendix). This suggests that European rabbit relative abundance 

progressively increased in areas with higher temperatures (C2, C4 and C5), higher availability of open 

forest with shrub and herbaceous cover (L7) and with the presence of lithosol soils. The upper limit 

of European rabbit relative abundance appears to be limited in areas with low values of these 

Figure 3 – Biplot of principal component analysis between the first component (PC1) and the second (PC2). 
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variables, because the slope of the regression was significantly different from zero for the the 95th 

quantile. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For both PC2 and PC3 the quantile regressions had negative slopes. That implies a negative effect on 

European rabbit relative abundance, when the variables of each component had positive loadings 

and a positive effect when variables had negative loadings. Therefore, variables with negative 

Figure 4 – Quantile regression plots for the first three principal components (PC1, PC2 and PC3). Regression lines 
are represented for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles in black, the 0.50 quantile in blue and the 
ordinary least squares estimates of the conditional mean function as the dashed red line.  
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influence on component were limiting the upper limit of the data distribution by low presence in the 

area; and the variables with positive influence on component were limiting by high presence in the 

area.   

For PC2, the slopes of quantile regressions were only significantly negative (𝑝 < 0.05) only for 

quantiles ≥ 0.70 (table 5 of Appendix), suggesting that the European rabbit relative abundance was 

potentially limited in areas with little presence of national hunting estates, and with a high 

availability of flat ground and high annual temperatures. 

 

 
 
 
 

 

 

 Variables Loadings  Variables Loadings 

PC1 

C5 annual minimum temperature 0.360 

PC5 

S8 mediterranean brown calcareous 
semi-clay soil, mediterranean red 
calcareous semi-clay soil 
 

-0.441 

L7 Open forest with shrub and/or 
herbaceous vegetation association, 
open areas with little and/or sparse 
vegetation 

0.349 L5 heterogeneous agricultural areas 0.428 

 

C4 annual mean temperature 

 

0.340 

S9 mediterranean brown non-
calcareous normal, mediterranean red 
non-calcareous normal  

0.420 

C2 annual maximum temperature 0.345  
S5 calcareous 

 

-0.362 

S4 lithosol soils 0.337  
S11 mediterranean brown non-
calcareous semi-hidromorphic, 
mediterranean red non-calcareous 
semi-hidromorphic 

 

-0.310 

PC2 

C4 annual mean temperature 0.348 

PC6 

H5 touristic hunting reserve -0.524 

H4 national hunting area -0.340 S12 mediterranean red calcareous 
normal soil 

-0.433 

C2 annual maximum temperature 0.333 T5 uppers slopes 0.421 

A1 flat 0.312 H1  unmanaged areas 0.360 

 A2 northeast -0.475 

PC7 

C3 July maximum temperature 0.378 

PC3 

A3 north -0.422 S12 mediterranean red calcareous 
normal soil 

0.364 

A9 southwest 0.370 T3 gentles -0.355 

A8 south 0.321 A1 flat -0.336 

PC4 

A5 northwest -0.581 

PC8 

S3 clay soil -0.607 

A8 south 0.482 S6 halomorphic, hydromorphic and 
turf soil 

0.515 

A10 west -0.447 H1   unmanaged areas -0.321 

Table 2 – First eight components (PC1 to PC8) from principal component analysis with loadings of the most contributive 
variables 
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For PC3, the slopes were only significantly negative (𝑝 < 0.05) for quantiles ≥ 0.85. The upper limit 

of the European rabbit relative abundance was, in this case, potentially limited by low presence of 

areas with northeast and north ground exposition and high presence of areas with southwest and 

south ground exposition.  

The ordinary least square regression was significant for all principal components, however values for 

𝑅2 were low (𝑅2 ≤ 0.1; table 3) with a reduced explained variability of the data distribution.  

Quantile regression shows different values of 𝑅1 for each quantile, however, higher values were all 

above the quantile 0.5 (see Appendix – quantile regression results). For PC2, PC3, PC5, PC6 and PC8 

the highest 𝑅1 value was for the upper significant quantile (see table 4 to 11 of Appendix). 

 
 

 
 
 
 
 
  

Quantile 

Slope 

Figure 5 – Slope of quantile regression (dashed dotted black line) between each predictor variable (principal 
components 1 to 8) and the response variable KIA for 50th to 99th quantiles with 95% confidence interval (gray shaded) 
to test the H0: slope=0 (gray solid line). Ordinary least square (solid red line) regression for the same variables with 
95% confidence interval (dashed red line). See the different scale for y-axis. 
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Multivariate regression quantile model 

The best multivariate model included three explanatory variables (PC1, PC3 and PC6), fitted for the 

95th quantile. As described in the univariate results, the selected model had a positive effect of PC1 

and a negative effect of PC3 on European rabbit relative abundance distribution. PC6 had also a 

negative effect on European rabbit relative abundance distribution (table 4).   

 
 
 
 
 
 
 
 
 
 
 
 
The multivariate approach revealed that the European rabbit relative abundance was limited by low 

temperature values, low presence of lithosol soil and mediterranean red calcareous normal soil, 

reduced area of touristic hunting estates, low presence of areas with south and southwest exposition 

and low availability area of open shrubs and herbaceous cover. The multivariate regression also 

 Regression type Model  Std. Error p-value Goodness-of-fit  

PC1 
95th QR 351,36 + 45,40x 15,84 0.004 R1=0.073 

OLS 100.18 + 21.57x 4.17 0.000 R2=0.117 

PC2 
99th QR 541.28 - 76.26x 11.60 0.000 R1=0.086 

OLS 100.18 -7.53x 3.512 0.032 R2=0.007 

PC3 
99th QR 574.63 - 80.66x 33.74 0.017 R1=0.111 

OLS 100.18 -10.78x 3.659 0.003 R2=0.015 

PC4 
85th QR 210.48 + 22.20x 9.47 0.013 R1=0.023 

OLS 100.18 + 15.95x 3.659 0.003 R2=0.026 

PC5 
95th QR 377.41 - 85.11x 11.00 0.000 R1=0.027 

OLS 100.18 -20.11x   5.062 0.000 R2=0.029 

PC6 
95th QR 384.50 - 51.28x 18.45 0.005 R1=0.048 

OLS 100.18 -11.29x   5.507 0.040 R2=0.029 

PC7 
80th QR 183.21 - 9.48x 9.48 0.028 R1=0.006 

OLS 100.18 -11.29x   5.507 0.040 R2=0.029 

PC8 
99th QR 560.96 + 51.95x 10.69 0.000 R1=0.020 

OLS 100.18 -11.29x 5.507 0.040 R2=0.029 

 Value Std. Error p-value 

Intercept 355.167 35.323 0.000 

PC1 47.236 10.842 0.000 

PC3 -34.851 15.316 0.023 

PC6 -60.316 13.956 0.000 

    

Table 3 – Univariate quantile regressions for the highest significant quantiles, and ordinary least square regressions 
for each KIA-principal component combination. 

Table 4 – Estimates of highest significant quantiles for each KAI-principal component regression. 
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revealed that the rabbit abundance was limited by high presence of areas with northeast and north 

ground exposition, high presence of upper slopes areas, and high presence of unmanaged areas. 

The best multivariate quantile regression model had the form of, 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4:             𝑦 = 355.167 + 47.236 𝑃𝐶1 − 34.851 𝑃𝐶3 − 60.316 𝑃𝐶6  

and revealed a highly significant correlation with KIA values (𝑟𝑠 = 0.495, 𝑝 < 0.01). 

The model projection for the entire study area (figure 6) showed that the central area had the biggest 

extent with the lowest values of limiting factors. Geographically, this area is situated on the Guadiana 

river basin and corresponds partially to the Guadiana protected area (Guadiana Valley Natural Park 

and Natura 2000 Network Site Guadiana; figure 6). Two other small areas in the north had low limiting 

factors for European rabbit relative abundance, both included on the Moura-Barrancos protected 

area (Natura 2000 Network Site Moura-Barrancos). Throughout the remaining study area, high values 

of limiting factors were represented, including the Monchique and Caldeirão protected areas (Natura 

2000 Network Site Monchique and the Natura 2000 Network Site Caldeirão, respectively).  

The model projection for the four natural protected areas showed that the Monchique and Caldeirão 

had the biggest extent with the highest influence of limiting factors. In contrast, the Guadiana natural 

protected area which had the biggest extent with the lowest influence of limiting factors. However, 

Guadiana protected area registered the highest and the lowest values of limiting factors, as well as 

in the Moura-Barrancos protected area (figure 6).  

When analyzing the limiting factors, the univariate quantile regression results for the four protected 

areas showed the European rabbit abundance was more limited by high presence of areas with upper 

slopes and unmanaged areas, and by low presence of mediterranean red calcareous normal soil and 

touristic hunting reserves in the Monchique and Caldeirão than in the other protected areas. Areas 

with high north and northeast exposition and low presence of south and southwest expositions also 

seemed to be more limited in the Monchique and Caldeirão protected areas. In turn, areas with low 

presence of high temperatures, low area with lithosol soils, and open areas with shrub and 

herbaceous cover seemed to limit more the abundance of European rabbits in Moura-Barrancos than 

in the other areas. In the Guadiana protected area, the European rabbit abundance seemed to be 

limited through low presence of lithosol soils, low presence of open areas with shrubs and 

herbaceous cover, low presence of high temperatures, and low presence of areas with south 

exposure. 
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Figure 6 – Projection of predictive KIA distribution with higher limiting areas (light color) and lower limiting areas (dark color) for European 
rabbit abundance. For each protected area, was represented the expected mean values from the multivaried regression quantile and the 
mean values of each principal component, PC1, PC3 and PC6. 
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DISCUSSION 

The European rabbit is a species with high adaptability to a number of environmental and ecological 

conditions, making it a successful colonist. Due to this characteristic, its distribution and abundance 

can be affected by several different factors. In fact, the present study showed that the distribution 

and abundance of this species is limited by numerous ecological, environmental and management 

factors. Moreover, the factors shaping the species’ distribution and abundance showed to be variable 

between the different distribution areas, supporting this species’ plasticity in colonizing different 

habitats. Even though the distribution areas studied have different characteristics, the method used 

was able to identify which factors were limiting the European rabbit’s distribution range and 

abundance in each of the different areas. The use of this new approach can aid in conservation and 

management measures, allowing an efficient and reliable identification of the factors affecting the 

European rabbit’s distribution and abundance. Even though this method is not widely used in 

ecology, this study showed that it can be highly useful not only for the European rabbit’s conservation 

management, but also could be used for other species of conservation interest.   

 

Environmental factors limiting the European rabbit’s population 

The present study demonstrated that the European rabbit’s abundance was limited by land cover, 

soil, climatic, topographic and hunting management factors. From this set of factors, the distribution 

and abundance of the European rabbit seemed to be more limited in areas with low availability of 

open areas with shrubs and herbaceous vegetation cover, low presence of high temperatures and of 

lithosol soils. This means that high abundance of European rabbits seemed to be more frequent in 

areas where these factors’ are present. Open areas with shrubs and herbaceous vegetation are 

composed by a mixed matrix of croplands, natural vegetation patches and scrublands. This landscape 

structure can provide both feeding and shelter areas in proximity of each other. Previous studies 

have also described that the European rabbit is a species mainly associated with sites containing a 

mixture of shrub cover and open areas in Mediterranean ecosystems (Moreno et al. 1996, Lombardi 

et al. 2003, Calvete et al. 2004, Fernández 2005). This area also comprised soils with less than 10cm 

deep over hard continuous rock. This contrasts with other studies, where soft and deep soils are 

selected by European rabbits to construct warrens (Gea-Izquierdo et al. 2005). The selection of this 

type of soil seemed to be related with the land cover type associated with it and not necessarily with 

the advantages for the European rabbits’ presence. The lithosol soils cover more than 60% of the 

study area, while the soft and deep soils are occupied by extensive areas of crops and forestry, which 

are not the suitable vegetation for European rabbits’ presence. Therefore, the European rabbit likely 

preferred the areas with the less suitable soil for warrens, but with the shrubs and herbaceous cover. 
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Besides the soil and land cover type, the areas with higher abundance also had high temperatures. 

High temperatures can be an advantage against diseases since they decrease the RHD virus survival 

(Tablado et al. 2012, McColl et al. 2002) and the presence of the Spilopsyllus cuniculi flea, a vector of 

European rabbit’s diseases (Osacar-Jimenez et al. 2001). Nevertheless, previews studies have 

demonstrated that temperature is directly correlated with European rabbit abundance in areas with 

Atlantic climate and inversely correlated in Mediterranean areas (reviewed in Delibes-Mateos et al. 

2009).     

The present study also showed that the factors shaping the European rabbits’ distribution and 

abundance showed to be variable between the different distribution areas. The four protected areas 

within the study area showed that the studied factors had different impacts on local European rabbit 

populations. The geographic proximity between Monchique and Caldeirão protected areas caused 

these areas to have similar influencing factors on European rabbits’ population. Both Monchique and 

Caldeirão protected areas had the lowest extent of suitable areas for European rabbits’ presence. 

This species abundance seemed to be limited in areas with high north and northeast exposition in 

upper slopes, with low availability of Mediterranean red calcareous soil and touristic hunting 

reserves. Areas with north and northeast exposition have less solar exposure and consequently are 

more wet and cold, limiting this species’ presence. Similar findings for the same area were reported 

by Godinho et al. (2013) that stated that the presence of European rabbits had negative relationship 

with both slope directions. This species probably avoids these topographic directions (Godinho et al. 

2013) since it seems to reduce litters’ survival (Rödel et al. 2009) and allow the presence of some 

diseases like RHD and the Spilopsyllus cuniculi flea, a vector of diseases (Osacar-Jimenez et al. 2001, 

McColl et al. 2002). Moreover, the abundance of European rabbit seems to be limited by the reduced 

availability of the opposite aspect (south and southwest), highlighting the importance of warm and 

dry areas. 

Topography and altitude has been reported by some researchers as an important factor for European 

rabbit’s distribution and abundance (e.g Calvete et al. 2004, Fárfan et al. 2008). This study shows that 

the high availability of upper slopes seems to limit the abundance of European rabbit in Monchique 

and Caldeirão protected areas. This finding is coherent with other studies where high topography is 

negatively related with abundance (Calvete et al. 2004, Fárfan et al. 2008). The Mediterranean red 

calcareous soil is a deep and soft soil (ISA, 2014), which can facilitates the construction of warrens 

(Gea-Izquierdo et al. 2005). The absence of this type of soil could limit the availability of shelter. Areas 

with soft soils have been demonstrated by others studies as an important factor for European rabbit’s 

distribution and abundance (e.g. Trout et al. 2000, Calvete et al. 2004, Williams et al. 2007). Limited 

occupancy of touristic hunting reserve is also related to constraints in the abundance of European 
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rabbits in the Monchique and Caldeirão protected areas. This lagomorph is one of the most 

appreciated small-game species in the south of Portugal, therefore high densities of European rabbits 

for hunting purposes is a common goal in hunting estates. Touristic hunting estates are the only 

estates with private management by stakeholders and are managed with the objective of profiting 

from hunting. Therefore, with more financial resources and target management, the European rabbit 

can have more suitable conditions, increasing its abundance and distribution in these estates. Similar 

findings were reported by Delibes et al. (2008c) where a higher abundance was found in intensively 

managed hunting areas than in protected areas and other non-protected areas. In accordance with 

these findings, the results of this study also suggest that abundance is limited by the presence of 

unmanaged areas, since there are no significant implementation efforts to increase the number of 

European rabbits.  

The European rabbit abundance in the Moura-Barrancos protected area seemed to be limited by the 

low presence of open areas with shrubs and herbaceous vegetation cover, of high temperatures and 

of lithosol soils. These factors had also different influences along the protected area, in which the 

most and the less suitable areas for the European rabbit’s presence were represented.   

Guadiana protected area had the largest suitable area for European rabbit’s presence, geographically 

surrounded in the south by the high-suitability area of the Guadiana river basin partially enclosed 

within the protected area (figure 6). However, this protected area had also unsuitable areas, where 

the European rabbit’s abundance is limited by the low presence of lithosol soils, open areas with 

shrubs and herbaceous cover, low presence of high temperatures and low presence of areas with 

low sun exposition.  

 

Quantile regression models  

Despite the fact that quantile regression is still little used in ecology, this method revealed to be a 

useful tool to detect the factors limiting the European rabbit population. Some other studies have 

demonstrated that quantile regression is a useful tool in ecological studies for detecting limiting 

factors (reviewed in Cade and Noon 2003). In fact, since it is a very plastic species, modelling the 

European rabbit is a challenge and the statistical models always have little variability explained (e.g. 

Virgos et al. 2003, Calvete et al. 2004). With the use of regression quantile models, it was possible to 

identify different limiting factors for different particular areas with the general features of the extent 

area. This is highly useful since it provides different information at the global and local level, making 

it more easy and efficient to implement specific management actions. By being able to give 

information at both scales, it also undermines the need to build different studies for the different 

scales, minimizing the overall cost of the study.  
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The statistical properties of regression quantiles provide advantages over the ordinary least-square 

(OLS) estimates (Cade and Noon 2003). One of the advantages was the possibility to explore other 

parts of the response distribution, and, in this case, model the upper quantiles, rather than just the 

mean response. Low variability explained in the OLS regressions shows that this is not the most 

suitable method to understand which factors are influencing the abundance of European rabbits. 

The spatial projection of the regression quantile multivariate model of the higher limit of the data 

distribution, provides a visual representation of the suitable areas that the European rabbit can 

occupy. The spatial representation includes the influence of measured and unmeasured factors that 

are influencing the species distribution and abundance (Eastwood et al. 2003, Vaz et al. 2008). With 

this representation it is possible to make a more accurate management plan for unsuitable areas and 

to identify the best areas in terms of prey abundance, in this particularly case for the Iberian lynx 

reintroduction.  

 

Implications for Iberian lynx conservation 

As the most endangered feline species in the world, the Iberian lynx has been a target of several 

conservation programs in the Iberia Peninsula (Simón et al. 2012). The ongoing reintroduction 

program, carried out in the scope of the LIFE+ IBERLINCE (LIFE10 NAT/ES/000570/IBERLINCE), is an 

example of one of the various conservation programs for this species and aims to recover the Iberian 

lynx populations in Portugal and Spain through habitat and prey management, as well as lynx 

reintroductions. For a successful reintroduction program for the Iberian lynx, stable and abundant 

prey resources are identified as one of the most important factors (Simón et al. 2009, 2012). 

Therefore, the increase in abundance and distribution of the populations of this species’ preferred 

prey, the European rabbit, is one of the priorities of this program. The present study provides useful 

information regarding which factors are influencing the abundance of European rabbits and which 

should be managed to increase this species’ population.  

From the four priority areas in southeast Portugal, Moura-Barrancos and the Guadiana protected 

areas have largest extent of unconstrained conditions for European rabbit populations. Due to the 

geographical position of these two priority areas, management efforts are recommended to create 

a corridor of favorable conditions for the European rabbit’s occurrence between these two areas.  

Even though the different protected areas within the study area present some distinct limiting factors 

affecting the distribution and abundance of the European rabbit, there are many concordant factors 

between them. The presence of this species seems to be favoured by warmer habitats, represented 

by south and southeast exposure and high temperatures in the study area. Moreover, despite not 

being present as a limiting factor in all the protected areas, the presence of deep and soft soils also 

seems to favour this species’ occurrence. Although these features cannot be directly managed, the 



44 
 

management measures hereafter proposed will be more successful if these factors are taken into 

account. Habitat management is recommended, as the land cover that seems to favour the presence 

of European rabbit are open areas with shrubs and herbaceous cover. Clearing of the shrubland in 

order to create a matrix of open spaces with herbaceous is an efficient way to increase habitat 

availability for this species. Touristic hunting estates showed to be the areas with better habitat 

management, presenting higher European rabbit abundance. Other hunting estates should consider 

incorporating these types of management practices, in order to increase suitable areas for this 

species. 

The present study provides useful information regarding which variables are influencing the 

distribution and abundance of European rabbit in the extent area in southwest Portugal and in four 

small areas with high importance for Iberian lynx reintroduction. Moreover, this study provides 

managers and conservationists with specific information on which management efforts should be 

applied to each area, while also providing general information on how to manage all the extent area. 

These efforts are particularly urgent, since a new variant of the RHD virus is currently affecting the 

European rabbit’s populations, and a stable and abundant population of these species is highly 

important for a successful reintroduction of the Iberian lynx.  
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MAIN CONCLUSIONS 

The present study provides useful information regarding which factors are influencing the 

distribution and abundance of European rabbit in the extent area in the southwest Portugal, 

encompassing four protected areas with high importance for Iberian lynx reintroduction. The 

European rabbits’ abundance showed to be limited by land cover, soil, climatic, topographic and 

hunting management factors. However, the factors shaping the European rabbits’ distribution and 

abundance showed to be variable between the different protected areas and in the extent study 

area. With this information managers and conservationists are able to apply specific management 

actions in each of the protected areas, by also obtaining general information on how to manage the 

whole of the extent area. 

The limiting factors were analyzed using quantile regression models. This method revealed to be a 

useful and reliable tool in identifying the factors that are shaping the European rabbit’s population. 

One of the advantages over the ordinary least-square (OLS) was the possibility to explore other parts 

of the response distribution and model the upper quantiles, rather than just the mean response. Low 

variability explained in the OLS regressions showed that this is not the most suitable method for our 

goal. 

The spatial projection of the regression quantile multivariate model provided a visual representation 

of the suitable areas for the European rabbit. The spatial representation included the influence of 

measured and unmeasured factors affecting the species’ distribution and abundance. With this 

representation it’s possible to make more accurate management plans and to identify the best areas 

in terms of prey abundance, in this particular case for the Iberian lynx reintroduction. In this context, 

the Moura-Barrancos and Guadiana protected areas had the largest suitable area for European rabbit 

presence. For these reasons, management efforts are recommended to create a single extent and 

unconstrained area for the European rabbits’ occurrence. 

This study is particularly important at a time when the European rabbits are affected by the new 

variant of RHD, and to have a stable and abundant population of European rabbit is imperative for a 

successful Iberian lynx restocking.   
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Appendix 

 

Sperman rank correlation results 

 

 

 

 

 

IKA A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 C1 C2 C3 C4 C5 C6 L1 L2 L3 L4 L5 L6 L7

IKA 1,000

A1 -,126** 1,000

A2 ,172** -,085 1,000

A3 ,116** -,072 ,574** 1,000

A4 -,035 -,223** ,056 ,640** 1,000

A5 -,259** -,014 -,386** ,085 ,586** 1,000

A6 ,067 ,022 -,101* -,487** -,540** -,444** 1,000

A7 ,077 -,107* ,506** -,051 -,334** -,500** ,510** 1,000

A8 ,131** ,065 -,398** -,533** -,573** -,490** ,398** -,134** 1,000

A9 -,166** ,169** -,571** -,500** -,329** ,016 -,219** -,477** ,378** 1,000

A10 -,335** ,043 -,555** -,312** ,104* ,654** -,345** -,468** -,211** ,472** 1,000

C1 -,060 -,110* ,009 ,096* ,128** ,126** -,098* -,040 -,210** -,007 ,082 1,000

C2 ,260** -,205** ,075 ,003 ,010 -,148** ,203** ,141** ,101* -,229** -,185** -,472** 1,000

C3 -,225** ,010 -,120** -,096* ,000 ,057 ,022 -,032 -,009 ,072 ,114* -,247** ,439** 1,000

C4 ,267** -,149** ,133** ,049 ,028 -,152** ,153** ,144** ,050 -,232** -,211** -,581** ,909** ,491** 1,000

C5 ,401** -,178** ,161** ,089* ,039 -,161** ,126** ,121** ,109* -,263** -,252** -,658** ,865** ,186** ,849** 1,000

C6 ,078 ,127** -,347** -,678** -,667** -,418** ,507** ,098* ,719** ,384** -,066 -,214** ,044 ,030 ,018 ,024 1,000

L1 ,011 ,274** -,041 -,038 -,073 ,005 ,101* ,016 ,050 -,035 -,031 -,009 -,045 -,056 -,031 -,006 ,066 1,000

L2 ,090* ,462** ,000 ,053 -,092* -,030 -,012 -,032 ,033 ,021 -,053 -,210** -,081 -,022 -,037 ,073 ,044 ,262** 1,000

L3 -,061 ,331** -,035 -,009 -,064 ,043 ,018 -,047 -,056 ,019 ,023 ,222** -,254** -,034 -,222** -,313** -,023 ,095* ,178** 1,000

L4 -,113* ,096* -,056 -,022 -,001 ,100* ,062 -,012 -,014 -,017 ,078 ,020 -,066 -,034 -,060 -,060 ,025 ,086 -,013 ,149** 1,000

L5 -,308** ,163** -,172** -,054 -,004 ,141** -,006 -,108* ,013 ,116** ,178** ,279** -,156** ,056 -,255** -,305** ,021 ,198** ,010 ,180** ,206** 1,000

L6 -,050 -,325** ,074 ,004 ,058 -,080 ,078 ,094* -,026 -,084 -,061 ,196** ,118** -,030 ,015 ,004 -,063 -,121** -,371** -,124** -,006 ,047 1,000

L7 ,467** -,419** ,133** ,111* ,136** -,121** ,082 ,109* ,106* -,260** -,216** -,224** ,492** -,154** ,454** ,633** ,004 -,093* -,161** -,324** -,055 -,392** ,069 1,000

L8 ,023 -,102* ,005 -,021 ,070 ,054 ,035 -,032 -,028 -,062 ,019 -,340** ,330** ,161** ,425** ,389** ,000 ,005 -,103* -,061 ,135** -,113* ,080 ,232**

S1 -,034 -,158** -,010 -,088* -,014 ,026 ,020 ,070 -,032 -,024 ,053 -,028 ,199** ,206** ,198** ,130** -,020 -,069 -,054 -,073 -,028 -,006 ,103* ,141**

S2 -,037 ,034 ,086 ,052 ,057 -,022 ,038 ,120** -,056 -,129** -,103* ,059 -,087 -,038 -,029 -,084 -,071 ,116** ,006 ,213** -,002 ,111* ,040 -,118**

S3 -,126** ,181** -,100* -,083 -,074 ,046 ,082 -,032 ,007 ,064 ,051 -,138** ,021 ,168** ,067 -,028 ,043 ,089* ,149** ,223** ,083 -,076 -,052 -,167**

S4 ,311** -,514** ,116** ,097* ,165** -,078 ,028 ,095* ,043 -,175** -,108* -,139** ,357** -,100* ,392** ,471** -,026 -,121** -,268** -,417** ,052 -,189** ,210** ,711**

S5 -,135** ,349** -,088* -,088* -,146** ,026 ,023 -,005 -,064 ,114* ,082 ,030 -,185** ,107* -,099* -,262** ,045 ,060 ,229** ,524** ,010 ,018 -,139** -,418**

S6 -,129** ,345** ,099* ,064 -,041 ,038 -,126** -,040 -,113* ,022 ,020 -,119** -,110* ,112* -,019 -,128** -,053 ,029 ,225** ,178** ,048 ,035 -,155** -,293**

S7 -,103* ,172** -,005 ,059 ,014 ,027 -,035 -,071 -,018 ,045 ,035 -,058 -,066 ,064 -,026 -,086 -,037 -,023 ,091* ,143** ,062 ,122** -,143** -,174**

S8 -,204** ,297** -,133** -,079 -,056 ,114* ,031 -,051 -,062 ,114* ,131** -,150** -,067 ,244** ,038 -,127** ,039 ,075 ,298** ,341** ,028 ,016 -,191** -,295**

S9 -,175** ,526** -,118** ,000 -,074 ,104* -,048 -,171** ,031 ,104* ,067 ,145** -,288** -,041 -,372** -,340** -,013 ,239** ,424** ,367** ,143** ,429** -,122** -,463**

S10 -,042 ,034 -,030 -,035 -,072 -,074 ,075 ,001 ,070 ,030 -,076 ,074 ,005 ,041 -,011 -,071 ,054 ,071 ,036 ,108* ,108* ,128** ,038 -,095*

S11 -,187** ,301** -,050 -,046 -,075 ,102* -,024 -,051 -,071 ,082 ,085 -,081 -,141** ,184** -,042 -,182** -,010 ,057 ,257** ,359** ,012 ,036 -,194** -,320**

S12 ,168** ,140** ,096* ,014 -,111* -,077 -,139** -,054 -,100* ,096* -,040 ,279** -,281** -,172** -,276** -,298** -,061 -,078 ,033 ,378** -,153** -,013 ,093* -,304**

S13 -,084 -,033 ,043 -,064 -,038 -,070 ,061 ,056 ,002 -,032 -,029 -,168** ,369** ,450** ,414** ,254** -,001 ,227** -,111* -,076 -,038 ,009 ,126** ,001

T1 -,152** ,731** -,113* -,022 -,149** ,077 ,020 -,124** ,037 ,106* ,068 -,014 -,250** ,030 -,202** -,239** ,053 ,297** ,431** ,282** ,124** ,221** -,313** -,428**

T2 ,035 ,016 ,015 ,009 ,026 ,017 ,021 ,029 -,025 -,005 -,035 ,058 -,019 -,015 ,005 -,013 ,107* ,048 -,026 ,059 ,062 -,025 ,043 -,053

T3 -,095* ,011 -,040 -,050 -,102* -,126** -,049 -,065 ,121** ,164** ,005 ,058 -,173** -,017 -,200** -,233** -,052 -,101* -,059 ,036 -,117** ,018 ,076 -,178**

T4 ,016 ,211** -,013 ,043 -,040 ,091* -,042 -,048 -,032 -,015 ,025 ,014 -,164** -,060 -,146** -,082 ,001 ,184** ,319** ,077 ,058 ,110* -,226** -,124**

T1 -,136** -,051 -,080 -,079 -,043 -,021 ,074 ,036 ,078 ,041 ,087 -,058 ,017 ,038 -,038 -,035 -,049 -,093* -,069 -,047 -,022 ,073 ,042 ,053

T2 ,049 -,319** ,012 -,021 ,136** ,031 ,113* ,094* -,057 -,146** -,024 -,111* ,391** ,147** ,404** ,330** ,049 -,109* -,330** -,141** ,070 -,145** ,187** ,302**

H1 ,120** -,021 -,115* -,118** -,098* -,123** ,186** ,017 ,230** ,011 -,081 ,097* ,090* ,032 -,043 ,076 ,212** ,068 ,101* ,191** ,070 ,105* -,031 ,140**

H2 ,034 ,080 -,087 -,063 -,067 -,023 ,135** ,007 ,125** ,011 -,027 ,018 ,020 -,157** -,070 ,097* ,115** ,131** ,205** ,161** ,122** ,135** -,024 ,107*

H3 -,113* ,232** -,044 -,014 ,002 ,097* -,031 -,034 -,043 ,026 ,073 -,022 -,068 ,099* -,060 -,111* ,021 ,101* ,141** ,214** ,029 ,162** -,047 -,218**

H4 -,167** -,177** ,040 ,162** ,200** ,020 -,150** -,050 -,089* -,023 ,025 ,292** -,282** -,212** -,291** -,294** -,155** -,106* -,198** -,134** -,019 -,050 ,211** ,023

H5 ,247** -,036 ,098* ,065 -,001 -,062 -,047 -,021 -,015 -,057 -,076 -,080 ,180** ,058 ,253** ,186** -,081 -,039 -,011 -,046 -,043 -,059 ,070 ,129**

H6 -,098* ,055 -,163** -,028 ,023 ,004 -,116** -,207** ,155** ,218** ,071 ,157** -,141** -,003 -,158** -,176** ,068 ,000 -,046 ,090* ,118** ,224** -,017 -,113*

Table 1 – Spearman rank correlation results between the KIA (Kilometric Index of Abundance) and the 49 independent 
variables. 
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KIA – Kilometric index of abundance;  Aspect variables: A1 – flat, A2 – northeast, A3 – north, A4 – north2, A5 – 

northwest, A6 – southeast, A7 – east, A8 – south, A9 – southwest, A10 – west; Climatic variables: C1 – annual mean 

precipitation, C2 – annual maximum temperature, C3 - July maximum temperature, C4 - annual mean temperature, 

C5 – annual minimum temperature, C6 – annual mean radiance, Land cover variables: L1 – artificial areas, L2 – 

temporary crops, L3 – permanent crops, L4 – pastures, L5 – heterogeneous agricultural areas, L6 – coniferous and 

deciduous forests, L7 – open forest with shrub and/or herbaceous vegetation association + open areas with little 

and/or sparse vegetation, L8 – Water bodies; Soil variables: S1 – rocky outcrop, S2 – aluviosoils, S3 – clays, S4 – 

lithosoils, S5 – calcareous, S6 – halomorphic, hydromorphic and turfs, S7 – litholic, S8 – mediterranean brown 

calcareous semi-clay + mediterranean red calcareous semi-clay, S9 - mediterranean browns non-calcareous normal + 

mediterranean reds non-calcareous normal, S10 - mediterranean browns non-calcareous semi-brown + 

mediterranean red non-calcareous semi-brown, S11 - mediterranean brown non-calcareous semi-hidromorphic + 

mediterranean red non-calcareous semi-hidromorphic, S12 – mediterranean reds calcareous normal S13 – artificial 

areas, Topographic variables:T1 – valleys, T2 – lower slopes, T3 – gentle slopes, T4 – steeps slopes, T5 – uppers slopes, 

T6 – ridges, Hunting areas variables: H1 – unmanaged estates , H2 – associative hunting estates, H3 – municipal 

hunting estates, H4 – national hunting estates, H5 – tourist hunting estates, H6 – non-hunting estates 

 

 

 

 

 

 

 

L8 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 T1 T2 T3 T4 T1 T2 H1 H2 H3 H4 H5 H6

L8 1,000

S1 ,199** 1,000

S2 ,079 ,051 1,000

S3 ,078 ,045 -,024 1,000

S4 ,305** ,071 -,093* -,173** 1,000

S5 ,012 -,031 ,137** ,404** -,432** 1,000

S6 -,024 -,021 ,109* ,220** -,278** ,248** 1,000

S7 ,002 -,062 ,097* ,063-,210** ,148** ,160** 1,000

S8 ,075 -,041 ,116** ,401** -,293** ,627** ,366** ,222** 1,000

S9 -,291** -,107* -,011 ,058-,734** ,249** ,160** ,185** ,112* 1,000

S10 ,067 ,092* ,110* ,070 -,082 ,164** -,038 ,044 ,025 ,088* 1,000

S11 -,001 -,021 ,140** ,243** -,346** ,527** ,477** ,232** ,633** ,163** -,037 1,000

S12 -,193** -,029 ,088* -,043-,345** ,378** ,121** -,056 -,032 ,234** -,030 ,158** 1,000

S13 ,386** ,287** ,109* ,087 ,011 ,005 ,036 ,034 ,045-,135** ,088* -,005-,126** 1,000

T1 -,188** -,159** -,027 ,181** -,478** ,298** ,288** ,147** ,270** ,566** ,069 ,281** ,109* -,101* 1,000

T2 ,191** ,007 ,217** -,033 ,025 ,054 ,006 ,002 ,023 -,079 ,103* ,018 ,074 ,126** -,126** 1,000

T3 -,184** -,031 -,027 ,024-,218** ,053 ,046 ,018 ,006 ,100* -,050 ,064 ,100* -,056 -,088* -,483** 1,000

T4 -,244** -,110* -,102* ,067-,147** ,072 ,076 -,025 ,055 ,316** -,010 ,074 ,073-,180** ,524** -,190** -,413** 1,000

T1 -,176** -,037-,125** ,030 ,006 -,062 -,035 ,037 ,032 ,036 -,091* -,049-,193** -,138** -,065-,722** ,535** -,145** 1,000

T2 ,486** ,195** ,107* -,031 ,372** -,140** -,133** -,011 -,040-,475** ,035 -,107* -,228** ,291** -,465** ,492** -,316** -,596** -,356** 1,000

H1 -,143** -,068 -,042 -,039 ,000 -,035-,153** -,056 -,038 ,136** ,022 -,054 -,031 -,077 -,011 -,052 -,050 ,013 ,115** -,002 1,000

H2 -,078 -,044 -,036 -,062 -,005 ,027 -,049 -,049 ,012 ,118** -,029 ,074 ,001 -,113* ,021 -,042 -,033 ,013 ,109* -,005 ,362** 1,000

H3 -,082 -,056 ,249** ,119** -,188** ,181** ,262** ,163** ,220** ,175** ,032 ,213** ,072 -,017 ,219** -,011 -,013 ,099* ,022 -,095* ,021 -,102* 1,000

H4 -,014 -,047 -,077 -,032 ,161** -,068 -,053 -,041 -,048-,135** -,022 -,051 -,042-,124** -,121** ,052 ,055 -,091* -,025 ,052 -,088* -,145** -,078 1,000

H5 ,190** ,137** -,019 ,071 ,135** ,025 -,052 ,005 -,069 ,018 ,038 -,083 ,104* ,086 ,018 ,032 -,080 ,085-,141** -,022-,202** -,598** -,216** -,162** 1,000-,138**

H6 -,043 -,014 -,028 ,033 -,073 ,040 -,034 ,036 -,019 ,127** ,081 -,001 -,002 ,004 ,042 -,078 ,112* -,037 ,073 -,062 ,062 ,052 ,012 ,178** -,138** 1,000
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Principal components analyses results 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Standard 
deviation 

2.164 1.715 1.639 1.431 1.2718 1.177 1.094 1.038 

Proportion of 
Variance 

0.180 0.113 0.103 0.079 0.0622 0.053 0.046 0.041 

Cumulative 
Proportion 

0.180 0.293 0.397 0.475 0.5376 0.591 0.637 0.678 

Eigenvalue 4.68 2.94 2.69 2.05 1.62 1.38 1.20 1.08 

 

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

A1 -0,20121 0,311877 -0,20786 0,051301 -0,05286 0,081709 -0,3364 0,06459 

A2 0,133007 -0,17655 -0,47536 0,113655 -0,00732 -0,0351 0,137793 0,052936 

A3 0,083004 -0,18543 -0,42243 -0,17638 0,122108 0,087439 0,001136 -0,09521 

A5 -0,14025 0,009162 0,079663 -0,58065 0,14036 0,008421 -0,011 -0,04867 

A8 0,035756 0,15088 0,320546 0,482336 -0,09335 0,01384 -0,14697 0,030012 

A9 -0,18359 0,128619 0,369705 0,089184 -0,1192 -0,23095 0,009387 0,130857 

A10 -0,18794 0,065705 0,292366 -0,44685 0,032957 -0,09856 0,060261 0,04487 

C2 0,339767 0,333219 -0,00713 -0,05106 0,117478 0,019324 0,070338 0,018232 

C3 0,09486 0,291966 0,0123 -0,07979 0,079162 0,021937 0,377681 -0,01608 

C4 0,345063 0,347862 -0,05077 -0,07867 0,028905 -0,0269 0,060366 0,077558 

C5 0,359866 0,292311 -0,03057 -0,02337 0,080366 0,017345 -0,04773 0,032104 

L5 -0,18109 0,023853 0,046771 -0,01872 0,42807 0,018398 -0,04611 0,057738 

L7 0,349425 -0,10727 0,083147 -0,03124 -0,0904 0,093506 -0,20101 -0,05447 

S3 -0,01123 0,125041 -0,06988 -0,03214 -0,14988 -0,13565 -0,17901 -0,60723 

S4 0,337262 -0,19247 0,16182 -0,11312 -0,09547 0,027528 -0,21108 0,065114 

S5 -0,13001 0,139949 -0,10223 -0,01695 -0,36231 -0,0982 0,281844 -0,12995 

S6 -0,09499 0,10975 -0,20767 0,007182 -0,01238 0,094608 -0,20686 0,514854 

S8 -0,1105 0,224824 -0,09468 -0,12234 -0,44141 0,124803 -0,03067 -0,15916 

S9 -0,26955 0,133817 -0,11622 0,140322 0,419657 0,012161 -0,00847 -0,14702 

S11 -0,10492 0,138517 -0,11514 -0,09931 -0,31003 0,256413 0,209993 0,232834 

S12 -0,10757 -0,07984 -0,15023 0,201151 -0,06457 -0,43257 0,363539 0,09976 

T1 -0,21829 0,285006 -0,19957 0,016148 -0,00772 0,046591 -0,3551 -0,05852 

T5 -0,00148 0,003825 0,116442 0,018839 0,003977 0,421488 0,269332 -0,17666 

H1 -0,03852 0,022226 0,062905 0,236403 0,178919 0,359759 0,142408 -0,32096 

H4 -0,08031 -0,33973 0,006629 -0,02562 -0,2283 0,140867 -0,18469 -0,05851 

H5 0,119278 0,056415 -0,08933 -0,05074 0,036097 -0,52415 -0,13133 -0,20123 

 

 

Table 2 – Principal eight components results from PCA analysis. 

 

Table 3 – Eigenvalues of the eight principal components for the analysed variables. 
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Aspect variables: A1 – flat, A2 – northeast, A3 – north, A4 – north2, A5 – northwest, A6 – southeast, A7 – east, A8 – 

south, A9 – southwest, A10 – west; Climatic variables: C1 – annual mean precipitation, C2 – annual maximum 

temperature, C3 - July maximum temperature, C4 - annual mean temperature, C5 – annual minimum temperature, 

C6 – annual mean radiance, Land cover variables: L1 – artificial areas, L2 – temporary crops, L3 – permanent crops, 

L4 – pastures, L5 – heterogeneous agricultural areas, L6 – coniferous and deciduous forests, L7 – open forest with 

shrub and/or herbaceous vegetation association + open areas with little and/or sparse vegetation, L8 – Water bodies; 

Soil variables: S1 – rocky outcrop, S2 – aluviosoils, S3 – clays, S4 – lithosoils, S5 – calcareous, S6 – halomorphic, 

hydromorphic and turfs, S7 – litholic, S8 – mediterranean brown calcareous semi-clay + mediterranean red calcareous 

semi-clay, S9 - mediterranean browns non-calcareous normal + mediterranean reds non-calcareous normal, S10 - 

mediterranean browns non-calcareous semi-brown + mediterranean red non-calcareous semi-brown, S11 - 

mediterranean brown non-calcareous semi-hidromorphic + mediterranean red non-calcareous semi-hidromorphic, 

S12 – mediterranean reds calcareous normal S13 – artificial areas , Topographic variables:T1 – valleys, T2 – lower 

slopes, T3 – gentle slopes, T4 – steeps slopes, T5 – uppers slopes, T6 – ridges, Hunting areas variables: H1 – 

unmanaged estates , H2 – associative hunting estates, H3 – municipal hunting estates, H4 – national hunting estates, 

H5 – tourist hunting estates, H6 – non-hunting estates 
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Quantile regression results 

Univarite models  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Quantile Model y= Std. Error p-value R1 

PC1 

10th 0,00 + 0,00x 0,00 1,000 0,0000 

20th 5,74 + 2,67x 1,08 0,014 0,0116 

30th 21,24 + 8,48x 1,44 0,000 0,0463 

40th 39,36 + 14,16x 1,60 0,000 0,0805 

50th 65,04 + 20,26x 1,79 0,000 0,1063 

60th 84,78 + 23,01x 2,45 0,000 0,1171 

70th 116,66 + 26,47x 2,96 0,000 0,1128 

75th 133,68 + 29,94x 3,70 0,000 0,1066 

80th 160,40 + 34,71x 5,33 0,000 0,0966 

85th 194,85 + 38,80x 6,85 0,000 0,0877 

90th 255,78 + 39,17x 8,49 0,000 0,0817 

95th 351,36 + 45,40x 15,84 0,004 0,0731 

99th 525,99 + 35,20x 41,80 0,400 0,0250 

Least-square Regression Model y=100.18 + 21.57x Std. Error = 4.17 p-value = 0.000 R2 = 0.117 

Table 4 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC1). 

 

Figure 1 – Regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC1 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  
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 Quantile Model y= Std. Error p-value R1  

 10th 0.00 + 0.00x 0.00 1.000 0,0000  

PC2 

20th 0.00 + 0.00x 0.00 1.000 0,0000  

30th 5.45 -0.39x 0.97 0.688 0,0001  

40th 21.63 + 1.81x 1.74 0.298 0,0004  

50th 50.77 -5.11x 2.85 0.073 0,0022  

60th 82.16 -8.03x 5.15 0.120 0,0054  

70th 124.65 -16.10x 4.43 0.000 0,0084  

75th 146.80 -18.75x 5.93 0.002 0,0116  

80th 181.81-20.77x 8.30 0.013 0,0172  

85th 224.56 -29.77x 5.73 0.000 0,0339  

90th 259.75 -37.17x 13.68 0.007 0,0420  

95th 379.90 -55.64x 5.41 0.000 0,0547  

99th 541.28 -76.26x 11.60 0.000 0,0861  

Least-square Regression Model y=100.18 -7.53x Std. Error = 3.512 p-value = 0.007 R2 = 0.007 

Figure 2 – regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC2 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  

 

Table 5 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC2). 
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 Quantile Model y= Std. Error p-value R1  

PC3 

10th 0.00 + 0.00x 0.00 1.000 0,0000  

20th 0.00 + 0.00x 0.29 1.000 0,0000  

30th 7.23-2.03x 1.44 0.148 0,0013  

40th 22.14 -5.90x 2.95 0.045 0,0051  

50th 48.14 -5.72x 4.06 0.159 0,0073  

60th 83.76 -6.60x 2.45 0.175 0,0041  

70th 119.83 -8.19x 6.41 0.202 0,0041  

75th 150.34 -7.01x 7.33 0.339 0,0032  

80th 178.28 -11.87x 9.40 0.207 0,0079  

85th 213.62 -23.52x 9.47 0.013 0,0124  

90th 268.72 -27.56x 12.69 0.030 0,0243  

95th 377.35 -46.63x 22.12 0.035 0,0345  

99th 574.63 -80.66x 33.74 0.017 0,1108  

Least-square Regression Model y=100.18 -10.78x Std. Error = 3.659 p-value = 0.003 R2 = 0.015 

Figure 3 – regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC3 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  

 

 

 

 

Table 6 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC3). 
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 Quantile Model y= Std. Error p-value R1  

PC4 

10th 0.00 + 0.00x 0.00 1.000 0.0000  

20th 0.00 + 0.00x 0.63 1.000 0.0000  

30th 10.11+ 5.26x 2.15 0.014 0.0087  

40th 28.49 + 13.88x 2.09 0.000 0.0262  

50th 53.46 + 19.85x 4.25 0.000 0.0371  

60th 83.50 + 23.22x 5.29 0.000 0.0324  

70th 121.27 + 24.64x 5.84 0.000 0.0326  

75th 145.73 + 24.97x 6.88 0.000 0.0354  

80th 165.71+ 26.09x 7.52 0.000 0.0302  

85th 210.48 + 22.20x 9.47 0.013 0.0229  

90th 273.53 + 20.95x 14.47 0.148 0.0135  

95th 365.63 + 27.93x 19.44 0.151 0.0172  

99th 571.34 + (-29.94)x 24.17 0.216 0.0162  

Least-square Regression Model y=100.18 + 15.95x  Std. Error = 3.659 p-value = 0.003 R2 = 0.026 

Figure 4 – regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC4 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  

 

Table 7 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC4). 
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 Quantile Model y= Std. Error p-value R1  

PC5 

10th 0.00 + 0.00x 0.00 1.000 0,0000  

20th 0.00 + 0.00x 0.20 1.000 0,0000  

30th 6.03 + 0.91x 0.73 0.216 0,0006  

40th 22.20 + 2.18x 4.05 0.589 0,0008  

50th 47.16 -2.85x 6.35 0.653 0,0002  

60th 85.56 -7.00x 6.15 0.254 0,0008  

70th 128.78 -21.16x 7.77 0.006 0,0084  

75th 152.51 -31.66x 9.54 0.000 0,0160  

80th 176.42-32.76x 10.34 0.001 0,0189  

85th 210.05 -40.07x 14.01 0.004 0,0258  

90th 258.44 -54.61x 16.28 0.000 0,0229  

95th 377.41 -85.11x 11.00 0.000 0,0267  

99th 597.64 -19.70x 36.65 0.591 0,0044  

Least-square Regression Model y=100.18 -20.11x   Std. Error = 5.062 p-value = 0.000 R2 = 0.029 

Table 8 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC5). 

 

Figure 5 – regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC5 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  
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 Quantile Model y= Std. Error p-value R1  

PC6 

10th 0.00 + 0.00x 0.00 1.000 0,0000  

20th 0.00 + 0.00x 0.33 1.000 0,0000  

30th 7.38 -2.92x 1.27 0.021 0,0043  

40th 24.07 -13.10x 4.89 0.000 0,0161  

50th 45.67 -2.85)x 6.35 0.007 0,0156  

60th 82.63 -18.86x 6.96 0.007 0,0135  

70th 122.90 -27.68x 5.24 0.000 0,0183  

75th 146.59 -25.33x 8.11 0.000 0,0207  

80th 176.55-36.84x 10.02 0.001 0,0207  

85th 216.30 -43.94x 13.00 0.001 0,0266  

90th 265.79 -33.02x 17.25 0.056 0,0282  

95th 384.50 -51.28x 18.45 0.005 0,0481  

99th 526.45 -37.71x 50.82 0.458 0,0540  

Least-square Regression Model y=100.18 -11.29x   Std. Error = 5.507 p-value = 0.040 R2 = 0.029 

Table 9 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC6). 

 

Figure 6 – regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC6 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  
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 Quantile Model y= Std. Error p-value R1  

PC7 

10th 0.00 + 0.00x 0.00 1.000 0,0000  

20th 0.00 + 0.00x 0.23 1.000 0,0000  

30th 5.87 -2.06x 2.00 0.302 0,0019  

40th 24.07 + (-8.46x 2.94 0.004 0,0051  

50th 47.04 + (-8.88x 5.61 0.113 0,0039  

60th 85.94 + (-14.10x 7.29 0.054 0,0061  

70th 123.33 -20.60x 5.24 0.015 0,0079  

75th 149.65 -14.35x 8.47 0.090 0,0103  

80th 183.21-9.48x 9.48 0.028 0,0060  

85th 206.42 -26.63x 15.90 0.095 0,0079  

90th 273.29 -18.61x 18.61 0.292 0,0042  

95th 387.84 -22.04x 26.29 0.402 0,0073  

99th 572.38 -38.21x 85.24 85.24 0,0041  

Least-square Regression Model y=100.18 -11.29x   Std. Error = 5.507 p-value = 0.040 R2 = 0.029 

Table 10 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC7). 

 

Figure 7 – regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC7 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  
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 Quantile Model y= Std. Error p-value R1  

PC8 

10th 0.00 + 0.00x 0.00 1.000 0,0000  

20th 0.00 + 0.00x 0.45 1.000 0,0000  

30th 5.85 -0.51x 2.17 0.812 0,0000  

40th 21.71 -1.23x 1.91 0.517 0,0001  

50th 48.22 -4.27x 4.88 0.381 0,0008  

60th 84.89 -7.00x 6.17 0.257 0,0010  

70th 120.88 + 9.5x 5.24 0.282 0,0011  

75th 151.34 + 12.48x 8.82 0.158 0,0020  

80th 171.48+ 2.64x 10.91 0.808 0,0006  

85th 207.14 -2.96x 11.84 0.802 0,0001  

90th 282.78 + 5.84x 19.13 0.760 0,0001  

95th 365.21 + 33.75x 7.49 0.000 0,0059  

99th 560.96 + 51.95x 10.69 0.000 0,0202  

Least-square Regression Model y=100.18 -11.29x   Std. Error = 5.507 p-value = 0.040 R2 = 0.029 

Table 11 – Estimates of slope, intercept, standard error for the H0: slope=0 for thirteen selected regression 
quantiles, where y is the dependent variable (IKA) and x is the independent variable (PC8). 

 

Figure 8 – regression lines for the 0.60, 0.70, 0.80, 0.90 and 0.95 quantiles of PC8 in black, the median fit in blue 
and the least squares estimates of the conditional mean function as the dashed red line.  

 


