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Utility function estimation: The entropy approach
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Abstract

The maximum entropy principle can be used to assign utility values when only partial information is available about the decision
maker’s preferences. In order to obtain such utility values it is necessary to establish an analogy between probability and utility
through the notion of a utility density function. In this paper we explore the maximum entropy principle to estimate the utility
function of a risk averse decision maker.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Maximum entropy; Utility functions; Preferences; Risk aversion

0. Introduction

The main goal of this research work is to explore the potential of the maximum entropy principle (ME) to estimate
utility functions. In fact, utility functions are one of the most important concepts in decision analysis. They can be
estimated empirically using partial information about the agent’s preferences and its tolerance about the risk. In this
paper we refer to partial information when we only have inferred the utility values based on observed decisions.

The main assumption taken to derive the utility function of an agent, using the ME principle is the correspondence
between the concept of equilibrium in physics (statistical) and economics (mechanical). According to some authors
(namely Foley [7], Candeal et al. [5], Darooneh [6]) economic equilibrium can be viewed as an asymptotic
approximation to physical equilibrium and some difficulties with mechanical picture (economic) of the equilibrium
may be eased by considering the statistical (physical) description of it.

In this paper we explore the ME principle to estimate the utility values of a risk averse investor. The rest of the
paper is organized as follows. In Section 1 we present a brief discussion of the background theory, namely the ME
principle and its applications to economics and more specifically to decision analysis. Section 2 presents the analogy
between utility and probability, and utility and entropy. In order to explain in a better way these matters, we show a
short example. Finally, Section 3 presents the main conclusions of this study.
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1. Background theory

Suppose that we have a set of possible events whose probabilities of occurrence are p1, p2, . . . , pn and H is a
measure of uncertainty. Shannon [18] developed a measure of uncertainty associated with an outcome from a set of
symbols that satisfy the following properties (i) H should be continuous in pi , i = 1, . . . , n; (ii) if pi = 1/n, then
H should be a monotonic increasing function of n; (iii) H is maximized in a uniform probability distribution context;
(iv) H should be additive; (v) H should be the weighted sum of the individual values of H.

According to Shannon [18] a measure that satisfies all these properties is the entropy which is defined as H (X) =

−
∑

i pi log pi . When the random variable has a continuous distribution, and pX (x) is the density function of the
random variable X , the entropy (usually called differential entropy) is given by H (X) = −

∫
pX (x) log pX (x)dx .

The properties of the entropy of continuous (differential entropy) and discrete distributions are mainly alike.
For continuous distributions, H (X) is not scale invariant (H (cX) = H (X) + log |c|) but is translation invariant
(H (c + X) = H (X)). The differential entropy may be negative and infinite [18,19]. Entropy [H (X)] is a measure
of the average amount of information provided by an outcome of a random variable and similarly, is a measure of
uncertainty about a specific possible outcome before observing it [11].

Jaynes [14] introduced the maximum entropy (ME) principle as a generalization of Laplace’s principle of
insufficient reason. The ME principle appears as the best way when we intend to make an inference about an unknown
distribution based only on few restriction conditions, which represent some moments of the distribution. According
to several authors (see for example Refs. [20,11]) this principle uses only relevant information and eliminates all
irrelevant details from the calculations by averaging over them.

The ME model is usually formulated to confirm the equality constraints on moments, or cumulative probabilities,
of the distribution of the random variable X , where h j (X i ) is an indicator function over an interval for cumulative
probability constraints and b j are the moments j of the distribution.

p∗
= arg max −

∑
i

pi log pi , s.t.∑
i

pi = 1∑
i

h j (X i ) pi = b j

pi ≥ 0 j = 1, . . . , m, i = 1, . . . , n.

(1)

The density that respects all the conditions of the model (1) is defined as Entropy Density (ED). The Lagrangian of
the problem is

L = −

∑
i

pi log pi − λ0

[∑
i

pi − 1

]
−

m∑
j=1

λ j

[∑
i

h j (X i ) pi − b j

]
, (2)

where λ0 and λi are the Lagrange multipliers for each probability or moment constraint. The solution to this problem
is

pi = exp

[
−λ0 − 1 −

m∑
j=1

λ j h j (X i )

]
. (3)

For small values of m it is possible to obtain explicit solutions [24]. If m = 0, meaning that no information is given,
one obtains a uniform distribution. As one adds the first and the second moments, Golan et al. [10] recall that one
obtains the exponential and the normal density, respectively. The knowledge of the third or higher moments does not
yield a density in a closed form and only numerical solutions may provide densities.

In many cases, precise values for moments and probabilities are unavailable. In face of this problem Abbas [4]
propose the use of the ME principle using upper and lower bonds in the moments constraints.

There are several research studies of ME applied to economics (see for example Refs. [12,16,21]).
The ME principle has been more recently applied in decision analysis, specially in the specification and estimation

of utility values and utility functions. For example, Fritelli [9] derives the relative entropy minimizing martingale
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measure under incomplete markets and demonstrates the connection between it and the maximization of exponential
utility. Herfert and La Mura [13] use a non-parametric approach based on the maximization of entropy to obtain a
model of consumer preferences using available evidence, namely surveys and transaction data. In a different approach
Abbas [3] presents an optimal question-algorithm to elicit von Neumann and Morgenstein utility values using the ME
principle. Abbas [1] uses ME to assign utility values when only partial information is available about the decision
maker’s preferences and Abbas [2] uses the discrete form of ME principle to obtain a joint probability distribution
using lower order assessments. Yang and Qiu [22] propose an expected utility-entropy measure of risk in portfolio
management, and the authors conclude that using this approach it is possible to solve a class of decision problems
which cannot be dealt with by the expected utility or mean-variance criterion.

Sandow et al. [17] use the minimization of cross-entropy (or relative entropy) to estimate the conditional probability
distribution of the default rate as a function of a weighted average bond rating, concluding that the modeling approach
is asymptotically optimal for an expected utility maximizing investor. Friedman et al. [8] explore an utility-based
approach to some information measures, namely the Kullback–Leibler relative entropy and entropy, using the example
of horse races. On the other way, Darooneh [6] uses the ME principle to find the utility function and the risk aversion
of agents in a exchange market.

According to Abbas [2], the ME principle presents several advantages when we seek to construct joint probability
distributions and assign utility values, namely: (i) it incorporates as much information as there is available at the time
of making the decision; (ii) it makes no assumptions about a particular form or a joint distribution; (iii) it applies to
both numeric and nonnumeric variables; and (iv) it does not limit itself to the use of only moments and correlation
coefficients, which may be difficult to obtain in decision analysis practice.

2. Utility and entropy

When a decision problem is deterministic, the order of the prospects is enough to define the optimal decision
alternative. However, when uncertainty is present, it is necessary to assign the von Neumann and Morgenstein utility
values. One of the basic assumptions of decision theory is that an agent’s observed behaviour can be rationalized in
terms of the underlying preference ordering, and if the observed behaviour is consistent with the ordering we can
make inferences about the utility function using the available data. Sometimes the observations are not sufficient to
clearly identify the orderings and one needs more general inference methods. La Mura [15] presented a non-parametric
method for preference estimation based on a set of axiomatic requirements: (i) no information; (ii) uniqueness; (iii)
invariance; (iv) system independence, and (v) subset independence. The axioms characterize a unique inference rule,
which amounts to the maximization of the entropy of the decision-maker’s preference ordering.

We extend an approach developed by Abbas [1] and also used before in a similar way by Herfert and La Mura [13],
the maximum entropy utility principle, where a utility function is normalized to the range between zero and unity and
the utility density function is the first derivative of a normalized utility function. Based on such a definition, the utility
density function has two main properties: (i) is non-negative; and (ii) integrates to unity. The two properties allows
the analogy between utility and probability, and consequently, with entropy [1].

For the discrete case, the utility vector has K elements, defined as

U , (u0, u1, . . . , uK−2, uK−1) = (0, u1, . . . , uK−2, 1). (4)

This vector of dimension K can be represented as a point in a (K − 2) dimensional space, which is defined by
0 ≤ u1 ≤ · · · ≤ uK−2 ≤ 1. This region, called utility volume, has a volume equal to 1/ (K − 2)!.

In the utility increment vector (1U ) the elements are equal to the difference between consecutive elements in the
utility vector, it has K − 1 elements and is defined by

1U , (u1 − 0, u2 − u1, . . . , 1 − uK−2) = (1u1, 1u2, . . . ,1uK−1) .

The coordinates of 1U are all non-negative and sum to unity.
According to Abbas [1] the knowledge of the preference order alone does not give any information at all about

the location of the utility increment vector. In these conditions it is reasonable to assume that the respective location
is uniformly distributed over the domain. The assumption gives equal likelihood to all utility values and satisfy the
agent’s preference order, adding no further information than the knowledge of the order of the prospects.
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For the continuous case, the concepts are similar, but the number of prospects K can be infinite. Is this case
the utility vector is a utility curve [U (x)], and has the same mathematical properties as a cumulative probability
distribution. The utility increment vector (or in this case, utility density function) is now a derivative of the utility curve

u(x) ,
∂U (x)

∂x
(5)

which is non-negative and integrates to unity.
Given the analogy between utility and probability, the concept of entropy can be used as a measure of spread for

the coordinates of the utility increment vector

H (1u1, 1u2, . . . ,1uK−1) = −

K−1∑
i=1

1ui log 1ui . (6)

The utility increment vector that maximizes this measure is the uniform distribution. There are other measures that can
be used to spread the utility increment vector, although, the entropy satisfies the following 3 axioms: (1) the measure
of spread of the utility increment vector is a monotonically increasing function of the number of prospects K , when
the utility increments are all equal; (2) the measure of spread of a utility increment vector should be a continuous
function of the increments; (3) the order in which we calculate the measure of spread should not influence the results.

The differential entropy can also be applied to a utility density function

H (u(x)) = −

∫ b

a
u(x) log u(x)dx,

and this function is maximized when u(x) = 1/ (b − a) . The uniform density integrates to a linear (risk neutral)
utility function.

The maximum entropy utility problem is described by

umax ent (x) = −

∫ b

a
u(x) log u(x)dx, s.t.∫ b

a
u(x)dx = 1∫ b

a
hi (x)u(x)dx = bi

u(x) ≥ 0, i = 1, . . . , n.

(7)

Abbas [1] used a CARA utility density to show that the differential entropy has a unique maximum, that occurs
exactly when the agent is risk neutral.

This approach is also defended by Darooneh [6], who considers that the equilibrium condition may be expressed
by the maximum entropy utility, since the risk of the market induces the randomness. The solution for this problem is
given by the following expression

umax ent (x) = exp[−λ0 − 1 − λ1h1(x) − λ2h2(x) − · · · − λnhn(x)], (8)

where [a, b] are the domain of the prospects, hi (x) is a given preference constraint, b′

i s are a given sequence of utility
values or moments of the utility function and λi is the Lagrangian multiplier for each utility value. The uniform utility
density is a special case of Eq. (8) where the constraints hi (x) do not exist. When h1(x) = x and the remaining
constraints are zero, the maximum entropy utility is a CARA utility on the positive domain. When h1(x) = x and
h2 (x) = x2 the maximum entropy utility is a Gaussian utility density, which integrates to a S-shaped prospect theory
utility function on the real domain.

The risk aversion parameter (γ ), using the Arrow–Pratt definition, of the agent is given by

γmax ent (x) = −
∂ ln [umax ent (x)]

∂x
= λ1h

′

1(x) + λ2h
′

2(x) + · · · + λnh
′

n(x), (9)
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Fig. 1. Utility density function (a) and utility function (b).

Table 1
Elicitation values for utility

u(x) 0 0.25 0.50 0.75 1.0

x 0 1 3 7 15

x are the monetary outcomes.

where h
′

i (x) = ∂hi (x)/∂x . The Eq. (9) shows the linear effect contributed by the derivative of each preference
constraint on the overall risk aversion function.

Abbas [1] presents several examples of application of maximum entropy utility principle, namely for cases when
we know some utility values, cases when we need to infer utility values by observing decisions and for the case
of multiattribute utility. For all the cases explored, Abbas [1] concludes that the maximum entropy utility principle
presents advantages and satisfies the important assumption of utility and probability independence that stems from the
foundations of normative utility theory.

The illustration of the maximum entropy utility problem can be made when we have a small number of utility
values. Sometimes when we elicited the values of some prospects (using for example the Certainty Equivalent Method)
the decision maker is not interested to give many answers [23]. In this case, it is difficult to find the best curve for the
utility and some statistical indicators are not useful.

Suppose that for some decision maker it is only possible to pose three questions to elicit the utility (first and last
utility values are fixed). Table 1 shows the available information.

The maximum entropy formulation for the density function is

umax ent (x) = −

∫ 15

0
u(x) log u(x)dx, s.t.∫ 15

0
u(x)dx = 1;

∫ 7

0
u(x)dx = 0.75;

∫ 3

0
u(x)dx = 0.5;

∫ 1

0
u(x)dx = 0.25

u(x) ≥ 0.

(10)

If we compare the preference constraints hi (x) of Eqs. (7) and (10), we find indicator functions over the intervals. The
solution of the maximization problem has the form

umax ent (x) = exp [−λ0 − 1 − λ1 I1(x) − λ2 I2(x) − λ3 I7(x)] , 0 ≤ x ≤ 15,

where I j are indicator functions for the interval j This equation is a staircase utility density function, as we see in
Fig. 1. It also shows the maximum entropy utility function is a piecewise linear function connecting the given utility
values.
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3. Conclusions

This paper presents an efficient alternative way to estimate the utility function of any agent when there is only
partial available information about the decision maker’s preferences. The maximum entropy approach, here presented,
provides a unique utility function that makes no assumptions about the structure, unless there is preference information
to support it.

Based on the recent literature on this area of research, we show that the analogy probability — utility can be
explored in order to use information theory measures, and obtain a more robust estimation of the utility function.
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