Elements of Weighted ASP

 $\begin{array}{ll} {\sf Francisco~Coelho^{1,2}} & {\sf Bruno~Dinis^3} \\ {\sf Salvador~Abreu^1} & {\sf Dietmar~Siepel^4} \end{array}$

¹NOVA LINCS & Departamento de Informática, Universidade de Évora ²High Performance Computing Chair ³CIMA & Departamento de Matemática, Universidade de Évora ⁴Universität Würzburg, Germany

SLATE'25 July 3, 2025

Why weighted answer-set programs?

To **combine** logic and statistics.

What WASPs do?

Propagate weights from atoms to events.

How is propagation done?

Relating atoms, stable models and events.

What are the results?

Illustrate & prototype weight propagation.

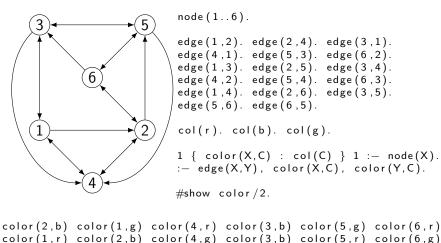
Combine logic and statistics

- State of the art of Probabilistic Logic Programming.
- Current limitations.
- Proposed framework.

We view logic programs as representation of knowledge.

- Models of such programs represent possibilities.
- Often our knowledge is **probabilistic**.

An Example of Logic Programming



State of the art of PLP

Syntax extension

• Probalilistic fact: a:p.

A **total choice** is a subset of a_i from the probabilistic facts $\{a_1: p_1, \ldots, a_n: p_n\}$.

Distribution semantics

$$P(T) = \prod_{a_i \in T} p_i \times \prod_{a_i \notin T} (1 - p_i)$$

A PLP where the probabilistic facts are replaced by a total choice is a standard logic program.

Probabilistic logic systems

- LP^{MLN} is the most general framework for PLP.
- Problog, P-log are other relevant PLP systems.

Current limitations

Burning questions:

- How to assign probability to the models of a program?
- How to deal with a-posteriori data?

Currently:

- Probability results from the syntax of a program.
- A-priori assumptions must be made for the models of such programs.

Insted, we propose to:

- 1 Use parameters to avoid a-priori assumptions.
- 2 Use **observations** to estimate those parameters.

Proposed framework

	Representation	Example	
System	WASP	$\begin{cases} a: 0.3, \\ b \lor c \leftarrow a \end{cases}$	
State Observation	Stable model Boolean Variables	$ \begin{array}{c} ab \\ \sim a, b, \neg c \end{array} $	

- Systems are represented by weighted ASPs.
- **States** of the system are the **stable models** of the ASP.
- Observations (events) result from boolean variables.
- But sensors may induce stochastic perturbations.

Propagate weights from atoms to events

- From total choices to stable models.
- From stable models to events.
- Probabilities.

From total choices to stable models

One total choice can entail many stable models.

$$\begin{cases} a: 0.3, \\ b \lor c \leftarrow a \end{cases}$$

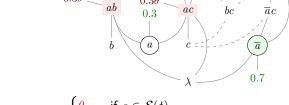
$$\mathcal{T} = a, \overline{a}$$

$$\Downarrow \text{ derive}$$

$$\begin{cases} a \lor \neg a, \\ b \lor c \leftarrow a \end{cases}$$

$$\mathcal{S} = \overline{a}, ab, ac$$

Parameters $\theta_{s,t}$ represent lack of knowledge...



$$\omega_{\mathcal{S}}(s,t) := \begin{cases} \theta_{s,t} & \text{if } s \in \mathcal{S}(t) \\ 0 & \text{otherwise.} \end{cases} \dots \text{ to be } \mathbf{estimated}$$
 s.t.
$$\sum_{\mathbf{r} \in \mathcal{S}(t)} \theta_{s,t} = 1 \qquad \text{from } \mathbf{data}.$$

From stable models to events

Observations (events) reduce uncertainty.

$$\begin{cases} a: 0.3, & \overline{ab} & \overline{abc} & \overline{bac} \\ b \lor c \leftarrow a & 0.3\overline{\theta} & \overline{ac} & \overline{bc} \end{cases}$$

$$\mathcal{T} = a, \overline{a}$$

$$\mathcal{S} = \overline{a}, ab, ac$$

$$0.3\overline{\theta} & \overline{ac} & \overline{ac} & \overline{ac} \\ 0.3\overline{\theta} & \overline{ac} & \overline{ac} & \overline{ac} \\ 0.7\overline{\theta} & \overline{ac} & \overline{ac}$$

Equivalence classes for events are based on \subseteq , \supseteq relations with the **stable models**.

Probabilities

Probabilities result from **normalization** of $\omega_{\mathcal{E}}$.

$$Z := \sum_{e \in \mathcal{E}} \omega_{\mathcal{E}}(e)$$

$$\begin{bmatrix} e \end{bmatrix} \begin{vmatrix} \bot & \lozenge & \overline{a} & ab & ac & \overline{a}, ab & \overline{a}, ac & ab, ac & \Lambda \\ P_{\mathcal{E}}(e) & 0 & 0 & \frac{7}{207} & \frac{1}{23} \theta & \frac{1}{23} \overline{\theta} & 0 & 0 & \frac{3}{46} & \frac{10}{23} \\ \end{bmatrix}$$

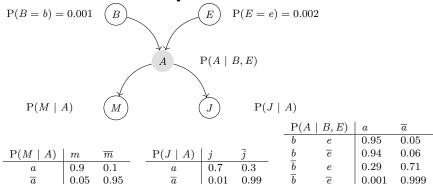
The θ can now be **estimated** from a dataset D of events by

$$\hat{\theta} := \arg_{\theta} \min \left\{ \sum_{e \in D} \left| P_{\mathcal{E}}(e \mid \theta) - P_{D}(e) \right| \right\}$$

Illustrate & prototype weight propagation

- A theoretical example.
- Prototype results and current state.
- Present & future development.

A theoretical example



$$\begin{cases} b:0.001, & e:0.002,\\ a:0.95 \leftarrow b \wedge e, & a:0.94 \leftarrow b \wedge \overline{e},\\ a:0.29 \leftarrow \overline{b} \wedge e, & a:0.001 \leftarrow \overline{b} \wedge \overline{e}\\ m:0.9 \leftarrow a, & m:0.05 \leftarrow \overline{a},\\ j:0.7 \leftarrow a, & j:0.01 \leftarrow \overline{a}, \end{cases}$$

Prototype results and current state

Pain points: Computation of $\#[e]_{\sim}$ and Z.

```
OBSERVATIONS

<-a> p_D: 0.3230
<a, c> p_D: 0.1630
<a, b> p_D: 0.5140

OPTIMIZATION Terminated(SolverConverged)
epsilon: 0.0100; Domain penalty: 100.0000
theta: [0.6330, 0.3569, 1.0031]
COSTS Target: 0.2690; Domain: 0.0000; Total: 0.2696

MODELS

<a, c> w_E: 0.3976 p_E: 0.0264 p_D: 0.1630
<-a> w_E: 0.3010 p_E: 0.0200 p_D: 0.3230
<a, b> w_E: 0.5264 p_E: 0.0349 p_D: 0.5140
```

Output from a generalization (next slide).

Present & future development

Generalize $\llbracket e \rrbracket$ to f(e,s) so that

$$w_{\mathcal{E}}(e) = \sum_{t \in \mathcal{T}} \sum_{s \in \mathcal{S}(t)} f(e, s) \theta_{s, t} \omega_{\mathcal{T}}(t)$$

which resembles Bayes' Rule:

$$\mathbf{P}(E = e) = \sum_{t \in \mathcal{T}} \sum_{s \in \mathcal{S}(t)} \underbrace{\mathbf{P}(E = e \mid S = s)}_{\text{sensor model}} \underbrace{\mathbf{P}(S = s \mid T = t) \, \mathbf{P}(T = t)}_{\text{system model}}$$

Compute the most probable state given an observation:
 P(S = s | E = e).

- Score a WASP with

$$\sum_{e \in D} | P_{\mathcal{E}}(e \mid \theta) - P_D(e) |.$$

Many steps are paralelizable.

Thank You!

Questions?

Assumptions of Machine Learning

 Each instance is described in a single row by a fixed set of features

Instances are independent of one another, given the model

$$y = f_{\theta}(\vec{x}).$$

• Parameters minimize estimation error e.g.

$$\hat{\theta} = \arg\min_{\theta} \sum_{i} ||y_i - f_{\theta}(\vec{x_i})||.$$

student	course	grade	Infer $X \succ_g Y$.
$\overline{s_1}$	c_1	a	"Proof."
s_2	c_1	c	1 1001.
s_1	c_2	b	$s_1 \succ_s s_2 \text{ (rows 1 \& 2)}$
s_2	c_3	b	so $c_2 \succ_c c_3$ (3 & 4).
s_3	c_2	<i>b</i>	2 0 0 ()
S_4	c_3	b	Then $s_3 \succ_s s_4 (5 \& 6)$
s_3	c_4	X	therefore $X \succ_g Y \Box$.
s_4	c_4	Y	

- Instances are **not independent**.
- Small dataset, so **no statistics**.

Failing Assumptions

2/2

Prompt: Given f(machine) = e, f(learning) = g and
f(algorithm) = m, what is the value of f(ksadbf)?

input	output
machine	e
learning	g
algorithm	m
ksadbf	?

Gemini: I cannot determine the value of f(program) with the given information...

ChatGPT: The information provided seems to define a function f where certain inputs are associated with specific outputs. Based on the given information:

- $f(\mathtt{machine}) = e$
- $\bullet \ \ f(\texttt{learning}) = g$
- f(algorithm) = m

However, there is no information given about $f(\operatorname{ksadbf})$. Without additional information or a specific rule that determines the output for $f(\operatorname{ksadbf})$, it is not possible to determine its value. If there is a pattern or rule for how the outputs are assigned based on the inputs, you would need to provide that information for me to help determine the value of $f(\operatorname{ksadbf})$.

No help from state-of-the-art Natural Language Processing or LLMs.

Where Machine Learning Fails

- No *interpretability*: large models ($\dim \theta \sim$ millions) are **not understandable by humans**.
- Need for large number of training examples.
- Unfit for multiple relations, intersample dependencies and variable features: The Students, Courses and Results and Last Letter examples.
- Poor generalization: A model trained in the iris dataset is useless in any other domain.
- No use of background knowledge.

References

- Gary Marcus, Deep Learning: A Critical Appraisal, 2018.
- François Chollet, *On the Measure of Intelligence*, 2019.
- Bengio et al., A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, 2019.
- Cropper et al., Turning 30: New Ideas in Inductive Logic Programming, 2020.
- Fabrizio Riguzzi, Foundations of Probabilistic Logic Programming, 2023.