
pagerank-dmat-ue

February 11, 2025

1 Algebra for Search Engines
We’ll see how Linear Algebra is at the heart of Online Search Engines such as Qwant, Ecosia
or Google.

1.1 About me
• Francisco Coelho
• fc@uevora.pt
• Mathematics, Logic, Computer Science, Artificial Intelligence

1

https://www.qwant.com/
https://www.ecosia.org/
https://google.com

1.2 Small Intro
1.2.1 Julia for research

Julia is a great programming language for research.

[1]: using Plots

[2]: x = -�:0.1:�;
y = sin.(x);

[3]: plot(x,y)

2

http://julialang.org

1.2.2 Notebooks for communication

Jupyter notebooks are a great tool to communicate science.

Hopefully, this presentation is a good example.

1.3 A Mathematical Model of the Internet
The internet is a digraph. Each page is a vertex and there’s an edge from 𝑎 to 𝑏 if 𝑎
“links” to 𝑏.

𝐺 = (𝑉 , 𝐸)

Let’s create a digraph in Julia.

[4]: using Graphs, GraphPlot, GraphRecipes, Printf

A digraph can be setup “by hand”. Let’s not do that.

[5]: # G = SimpleDiGraph(5);

add_edGe!(G, 1, 2);
add_edGe!(G, 1, 4);

3

https://jupyter.org/

add_edGe!(G, 2, 3);
add_edGe!(G, 2, 5);
add_edGe!(G, 3, 4);
add_edGe!(G, 3, 1);
add_edGe!(G, 4, 2);
add_edGe!(G, 4, 1);
add_edGe!(G, 5, 1);

Instead, here’s an arbitrary sized random graph, without loops. For fun, of course.

[6]: n = 10;

G = SimpleDiGraph(n); # A digraph with n vertices
V = vertices(G); # These are the vertices of G
for a in V

outs = rand(V, rand(1:n)) # Generate a list of descendents of vertex a
for b in outs

if b != a # No loops!
add_edge!(G, a, b)# Add an edge a -> b

end
end

end

A plot of the graph.

[7]: sizes = [indegree(G, v) for v in V]
graphplot(G,

method=:circular,
names=[@sprintf("%2d", x) for x in 1:n], # Hack to the node size $(
nodeweights=sizes,
markercolor=colorant"khaki",
nodeshape=:circle,
nodesize=1,
fontsize=8,
linecolor=:darkgrey,
markersize=0.2

)

4

The size of the node reflects the indegree: the number of incoming edges.

What is the indegree of each vertex?

[8]: importances = Dict(zip(V, sizes)) # match each vertex with its in-degree
sort(importances, # sort

byvalue=true, # by in-degree
rev=true # in reverse order: the largest first

)

OrderedCollections.OrderedDict{Int64, Int64} with 10 entries:
7 => 7
5 => 5
10 => 5
3 => 4
4 => 3
6 => 3
2 => 3
8 => 3
9 => 2
1 => 2

1.3.1 Research Questions

What is the most important vertex in that graph?

5

Better yet: How to rank the vertices by importance?

Is indegree a good importance measure? - No. It is easy to cheat. To “promote”
a vertex just create many parents pointing to it.

Condition 1 The importance of a vertex must depend on the importance of it’s parents.

Should all the edges contribute the same? - No. A vertex with many descendents would
have disproportional impact.

Condition 2 The contribute of a vertex must be divided by it’s descendents.

• We would like to rank pages respecting conditions 1 and 2.
• And, of course, the algorithm to do that must be efficient.

1.3.2 A Random Walk Approach

You start somewhere in the graph and go on, from vertex to vertex, every time choosing a random
neighbour to jump.

Where would you end after infinite jumps?

Or better:

What is the probability of ending on a given vertex after infinite jumps?

Enter algebra.

1.4 Algebraic Treatment of Graphs
A graph 𝐺 = (𝑉 , 𝐸) has (among others) these two common matrix representations:

The incidence matrix relates vertices and edges: - 𝑚𝑖𝑗 iff vertex 𝑣𝑖 belongs to edge 𝑒𝑗.

The adjacency matrix “defines” each edge through its vertices: - 𝑎𝑖𝑗 iff (𝑣𝑗, 𝑣𝑖) ∈ 𝐸
Column 𝑖 shows the outedges of vertex 𝑣𝑖.

Here is the adjacency matrix of the graph above:

[42]: adjacency_matrix(G)'

10×10 Adjoint{Int64, SparseArrays.SparseMatrixCSC{Int64, Int64}} with 37 stored␣
↪entries:
� 1 � � � � � 1 � �
1 � � � 1 � � � 1 �
� � � 1 1 � � � 1 1
1 � � � 1 � � � � 1
� 1 1 � � � 1 1 1 �
� � 1 � 1 � 1 � � �
1 1 � 1 1 1 � � 1 1
� 1 � 1 � � � � 1 �
� � � 1 1 � � � � �
� 1 � 1 � 1 � 1 1 �

6

This is a sparse matrix. It is an optimized representation of matrices with lots of zeros.

Our examples are small enough to use dense matrices.

[43]: A = Matrix(adjacency_matrix(G)')

10×10 Matrix{Int64}:
0 1 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 0 1 1
1 0 0 0 1 0 0 0 0 1
0 1 1 0 0 0 1 1 1 0
0 0 1 0 1 0 1 0 0 0
1 1 0 1 1 1 0 0 1 1
0 1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 1 1 0

So, column 𝑖 shows the descendants of vertex 𝑖.

[11]: # The descendants of vertex 3
A[:,3]

10-element Vector{Int64}:
0
0
0
0
1
1
0
0
0
0

A 1 in position 𝑗 of column 𝑖 means that there’s an edge 𝑣𝑖 → 𝑣𝑗.

Does it check?

The outedges of 𝑣2 are:

[44]: [i for i in 1:n if A[i, 2] != 0]

5-element Vector{Int64}:
1
5
7
8

10

Does it check?

7

1.4.1 Playing with the Adjacency Matrix

The adjacency matrix describes paths in the graph.

Vertices Vertices are represented by one-hot column vectors.

Vertex 𝑖 is represented by the vector 𝑣𝑖 ∈ ℝ𝑛×1 such that (𝑣𝑖)𝑗 = 𝛿𝑖𝑗 .

𝑣𝑖 is the 𝑖-th column of the identity matrix 𝐼𝑛×𝑛 for a graph with 𝑛 vertices.

[13]: v(i,n) = [i == j for j in 1:n]

v (generic function with 1 method)

Let’s check.

If we start in vertex 3, we have 𝑣3:

[14]: v3 = v(3,n)

10-element Vector{Bool}:
0
0
1
0
0
0
0
0
0
0

Descendants And in 𝐺 we can reach the vertices 𝐴𝑣3:

[15]: descendants_3 = A * v3

10-element Vector{Int64}:
0
0
0
0
1
1
0
0
0
0

This means that in 𝑔, there is a path of length 1 from vertex 3 to vertices…

[16]: [i for i in 1:n if descendants_3[i] == 1]

8

2-element Vector{Int64}:
5
6

Does it check?

Let’s state this:

If 𝐴 is the adjacency matrix of graph 𝐺 and 𝑣𝑖 the column representation of vertex 𝑖
then

𝐴𝑣𝑖

are the vertices reachable from 𝑣𝑖.

Paths If we repeat this process we get the paths of length 2, 3, etc.

Where can we get in two steps, starting at vertex 3?

𝐴𝐴𝑣3

[17]: A * A * v3

10-element Vector{Int64}:
0
1
1
1
0
1
2
0
1
1

The values we get here are the number of paths from the start vertex.

Does it check?

This is nice! Let’s state it:

Let 𝐴 and 𝑣𝑖 as before. Then the 𝑗-th row of

𝐴𝑛𝑣𝑖

is the number of length 𝑛 paths 𝑣𝑖 → 𝑣𝑗.

1.4.2 Playing with Random Walks

What is a random walk in a graph?

1. Start at a given vertex, say 𝑣0.
2. Move through a random edge.
3. Repeat.

9

The key question here is:

What is the probability of reaching a given vertex 𝑢 after 𝑛 steps starting at
vertex 𝑣0?

To address this question we transform the adjacency matrix into a transition matrix.

Instead of the (boolean) information about edges 𝑣𝑖 → 𝑣𝑗 we encode the probability of going from
𝑣𝑖 to 𝑣𝑗:

𝑃(𝑣𝑖 → 𝑣𝑗)

We can also think as the edges having “weights”, “costs”, etc.

Recall our research question:

What is the probability of ending on a given vertex after infinite jumps?

In any given vertex there are no preferred targets. This means that

The transition matrix results from the adjacency matrix by normalizing each col-
umn.

Right?

[18]: using LinearAlgebra

Recall that the adjacency matrix is…

[19]: A

10×10 Matrix{Int64}:
0 1 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 0 1 1
1 0 0 0 1 0 0 0 0 1
0 1 1 0 0 0 1 1 1 0
0 0 1 0 1 0 1 0 0 0
1 1 0 1 1 1 0 0 1 1
0 1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 1 1 0

… so the transition matrix becomes:

[20]: # Normalize a column (ie: sum(column) = 1)
normalizer(col) = col ./ sum(col)

Apply "normalizer" to each column and gather the results in a new matrix.
T = hcat(normalizer.(eachcol(A))...)

10×10 Matrix{Float64}:
0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.333333 0.0 0.0
0.333333 0.0 0.0 0.0 0.166667 0.0 0.0 0.0 0.166667 0.0
0.0 0.0 0.0 0.2 0.166667 0.0 0.0 0.0 0.166667 0.333333

10

0.333333 0.0 0.0 0.0 0.166667 0.0 0.0 0.0 0.0 0.333333
0.0 0.2 0.5 0.0 0.0 0.0 0.5 0.333333 0.166667 0.0
0.0 0.0 0.5 0.0 0.166667 0.0 0.5 0.0 0.0 0.0
0.333333 0.2 0.0 0.2 0.166667 0.5 0.0 0.0 0.166667 0.333333
0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.166667 0.0
0.0 0.0 0.0 0.2 0.166667 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.0 0.2 0.0 0.5 0.0 0.333333 0.166667 0.0

Let’s check:

[21]: sum.(eachcol(T))'

1×10 adjoint(::Vector{Float64}) with eltype Float64:
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Playing with the Transition Matrix What is the probability distribution of reaching each
vertex, starting at 𝑣3?

𝑇 𝑣3

[22]: T * v3

10-element Vector{Float64}:
0.0
0.0
0.0
0.0
0.5
0.5
0.0
0.0
0.0
0.0

We can plot this, for better visualization:

[23]: bar(T * v3, xticks=1:n, legend=nothing)

11

And after two steps?

𝑇 𝑇 𝑣3

[24]: bar(T * T * v3, xticks=1:n, legend=nothing)

12

And after 10 steps?

$$

T^{10} v_3 $$

[25]: bar(T^10 * v3, xticks=1:n, legend=nothing)

13

By the way… is this a probability distribution?

[26]: sum(T^10 * v3) � 1

true

And if we don’t know where to start?
Suppose that we can start at vertex 2 with probability 0.7 and at vertex 4 with probability
0.3.
Then

𝑣0 =

⎡
⎢
⎢
⎢
⎢
⎣

0.0
0.7
0.0
0.3
0.0
⋮

⎤
⎥
⎥
⎥
⎥
⎦

[27]: v0 = zeros(n)
v0[2] = 0.7
v0[4] = 0.3;

Initial distribution

14

[28]: bar(v0, xticks=1:n, legend=nothing)

After one step

𝑇 𝑣0

[29]: bar(T * v0, xticks=1:n, legend=nothing)

15

After 10 steps

𝑇 10𝑣0

[30]: bar(T^10 * v0, xticks=1:n, legend=nothing)

16

Suppose that each vertex has the same probability to start:
Then

𝑣0 = ⎡⎢
⎣

𝑝
⋮
𝑝
⎤⎥
⎦

where 𝑝 = 1
𝑛 .

Initial distribution

[31]: p = 1.0 / n;
vp = p .* ones(n);

bar(vp, xticks=1:n, legend=nothing)

17

After one step

𝑇 𝑣𝑝

[32]: bar(T * vp, xticks=1:n, legend=nothing)

18

After 10 steps

𝑇 10𝑣𝑝

[33]: bar(T^10 * vp, xticks=1:n, legend=nothing)

19

Let’s summarize.
1. The transition matrix, 𝑇 , represents the probability of crossing the edge 𝑣𝑖 → 𝑣𝑗.
2. Given an initial distribution of the vertices, 𝑣0, the final distribution after 𝑛 steps

is given by
𝑣𝑛 = 𝑇 𝑛𝑣0

where 𝑣0 is the uniform distribution of vertices.

1.5 To the infinite

Now we have an algebraic formulation of our research question:
What is the probability of ending on a given vertex after infinite jumps?

Given the transition matrix of the internet, 𝑇 , and a uniform initial distribution of the pages,
𝑣0, what is

lim
𝑛→∞

𝑇 𝑛𝑣0

There are two ways of addressing this problem.

1.5.1 The Naive resolution

• Suppose that 𝑇 is diagnosable (why not?). Then

𝑇 = 𝑃𝐷𝑃 −1

20

where 𝐷 is a diagonal matrix.
Furtermore: 𝐷 contains the eigenvalues of 𝑇 and the columns of 𝑃 are the (associated)
eigenvectors.
So

𝑇 𝑛 = 𝑃𝐷𝑛𝑃 −1

and 𝐷𝑛 is very easy to compute: (𝐷𝑛)𝑖𝑖 = (𝑑𝑖𝑖)𝑛.
It is always a good idea to look at the eigenvalues…

In our graph, the eigen values/vectors of 𝑇 are

[34]: evv = eigen(T)

Eigen{ComplexF64, ComplexF64, Matrix{ComplexF64}, Vector{ComplexF64}}
values:
10-element Vector{ComplexF64}:

-0.3497671963601029 - 0.2608191080457634im
-0.3497671963601029 + 0.2608191080457634im

-0.25619614214600794 - 0.31010273881464334im
-0.25619614214600794 + 0.31010273881464334im
-0.20458588344395368 + 0.0im

1.7344840435774148e-16 + 0.0im
0.015394113017583741 - 0.09071069229697648im
0.015394113017583741 + 0.09071069229697648im

0.3857243344210082 + 0.0im
1.0000000000000022 + 0.0im

vectors:
10×10 Matrix{ComplexF64}:

0.0473934+0.07705im … 0.45495+0.0im -0.0515084+0.0im
-0.248773+0.0440162im 0.375535+0.0im -0.115103+0.0im

0.00927168-0.153492im -0.121192+0.0im -0.257254+0.0im
-0.13541-0.119039im 0.165546+0.0im -0.211981+0.0im
0.596437-0.0im -0.0884154+0.0im -0.467316+0.0im
0.368311+0.125783im … -0.60215+0.0im -0.473647+0.0im

-0.400116-0.126623im -0.313864+0.0im -0.534268+0.0im
0.159822-0.144342im 0.301135+0.0im -0.0854636+0.0im

-0.100266+0.142836im 0.0476332+0.0im -0.120282+0.0im
-0.296669+0.15381im -0.219177+0.0im -0.350775+0.0im

Pfff … there are lots of complex numbers and this is not really helping …
Wait!!!
1 is an eigen value!

[35]: evv.values .� 1

10-element BitVector:
0

21

0
0
0
0
0
0
0
0
1

An associated eigen vector is

[36]: ev = evv.vectors[:, evv.values .� 1]

10×1 Matrix{ComplexF64}:
-0.051508388059579274 + 0.0im
-0.11510254314989735 + 0.0im
-0.25725418394002103 + 0.0im
-0.2119805169677277 + 0.0im

-0.46731632518858357 + 0.0im
-0.47364696506182774 + 0.0im
-0.5342676377874402 + 0.0im
-0.0854636382887989 + 0.0im
-0.1202821575916429 + 0.0im
-0.3507750002493124 + 0.0im

which is a real vector. Let’s check that:

[37]: all(imag.(ev) .== 0)

true

Let’s discard the imaginary parts:

[38]: evr = real.(ev)

10×1 Matrix{Float64}:
-0.051508388059579274
-0.11510254314989735
-0.25725418394002103
-0.2119805169677277
-0.46731632518858357
-0.47364696506182774
-0.5342676377874402
-0.0854636382887989
-0.1202821575916429
-0.3507750002493124

And visualize the limit
lim

𝑛→∞
𝑇 𝑛𝑣0

22

[39]: bar(evr ./ sum(evr), xticks=1:n, legend=nothing)

But
This method is not practical.

The “real” 𝑇 matrix today would have around 1100 millions of rows. This is too much to
process “directly” with eigen.
Also…

Why the focus on the eigenvalue 1?
well… the eigenvalue 1 and the associated eigenvector leads us to…

1.5.2 The Elegant Resolution

Let
𝑣 = lim

𝑛→∞
𝑇 𝑛𝑣0.

So it must be
𝑇 𝑣 = 𝑣.

Because if 𝑇 𝑣 ≠ 𝑣 then 𝑣 is not the lim𝑛→∞ 𝑇 𝑛𝑣. Right?

23

𝑣 = 𝑇 ⋯ 𝑇⏟
𝑛→∞

𝑣0 = 𝑇 𝑇 ⋯ 𝑇⏟
𝑛→∞

𝑣0

Therefore 𝑣 is an eigenvector associated to the eigenvalue 1.
To compute an eigenvector associated to the eigenvalue 1 we solve

𝑇 𝑣 − 𝑣 = 0 ⇔ (𝑇 − 𝐼)𝑣 = 0

[40]: ev = nullspace(T - I(n))

10×1 Matrix{Float64}:
0.051508388059579135
0.11510254314989754
0.25725418394002086
0.21198051696772766
0.4673163251885837
0.473646965061828
0.5342676377874407
0.0854636382887988
0.12028215759164282
0.35077500024931235

The final page rank is:

[41]: bar(ev ./ sum(ev), xticks=1:n, legend=nothing)

24

1.6 And behind

We have shown that
Linear Algebra, in particular Spectral Analysis, is at the core of the PageR-
ank algorithm, used every day in Search Engines.

However there are limitations to the basic method presented here. What if the network has
separate components?
I also took the liberty of deviating substantially from the traditional presentation to illustrate
two modern tools that I have come to appreciate substantially:

• The Julia language to prototype reseach ideas — and do the heavy computations if
required.

• Jupyter notebooks to communicate those ideas.
These are free, open source tools, as it must be to do true Science.

Thank you!

Questions?

25

http://julialang.org
https://jupyter.org/

	Algebra for Search Engines
	About me
	Small Intro
	Julia for research
	Notebooks for communication

	A Mathematical Model of the Internet
	Research Questions
	A Random Walk Approach

	Algebraic Treatment of Graphs
	Playing with the Adjacency Matrix
	Playing with Random Walks

	To the infinite
	The Naive resolution
	The Elegant Resolution

	And behind

