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The rate of natural carbonation of tectonically exposed mantle
peridotite during weathering and low-temperature alteration can
be enhanced to develop a significant sink for atmospheric CO2.
Natural carbonation of peridotite in the Samail ophiolite, an
uplifted slice of oceanic crust and upper mantle in the Sultanate of
Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in
Oman have an average 14C age of �26,000 years, and are not 30–95
million years old as previously believed. These data and reconnais-
sance mapping show that �104 to 105 tons per year of atmospheric
CO2 are converted to solid carbonate minerals via peridotite
weathering in Oman. Peridotite carbonation can be accelerated via
drilling, hydraulic fracture, input of purified CO2 at elevated pres-
sure, and, in particular, increased temperature at depth. After an
initial heating step, CO2 pumped at 25 or 30 °C can be heated by
exothermic carbonation reactions that sustain high temperature
and rapid reaction rates at depth with little expenditure of energy.
In situ carbonation of peridotite could consume >1 billion tons of
CO2 per year in Oman alone, affording a low-cost, safe, and
permanent method to capture and store atmospheric CO2.

alteration and weathering � carbon capture � exothermic �
carbon sequestration � mineral

Recognition that anthropogenic CO2 input to the atmosphere
has substantially increased atmospheric CO2 concentration,

and that increased CO2 may drive rapid global warming, has
focused attention on carbon capture and storage (1). One
storage option is conversion of CO2 gas to stable, solid carbonate
minerals such as calcite (CaCO3) and magnesite (MgCO3) (2).
Natural carbonation of peridotite by weathering and low-
temperature alteration is common. Enhanced natural processes
in situ may provide an important, hitherto neglected alternative
to ex situ mineral carbonation ‘‘at the smokestack.’’ In this
article, we evaluate the rate of natural carbonation of mantle
peridotite in the Samail ophiolite, Sultanate of Oman, and then
show that under certain circumstances exothermic peridotite
alteration (serpentinization, carbonation) can sustain high tem-
perature and rapid reaction with carbonation up to 1 million
times faster than natural rates, potentially consuming billions of
tons of atmospheric CO2 per year. In situ mineral carbonation
for CO2 storage should be evaluated as an alternative to ex situ
methods, because it exploits the chemical potential energy
inherent in tectonic exposure of mantle peridotite at the Earth’s
surface, does not require extensive transport and treatment of
solid reactants, and requires less energy for maintaining optimal
temperature and pressure.

Tectonically exposed peridotite from the Earth’s upper man-
tle, and its hydrous alteration product serpentinite, have been
considered promising reactants for conversion of atmospheric
CO2 to solid carbonate (3). However, engineered techniques for
ex situ mineral carbonation have many challenges. Kinetics is
slow unless olivine and serpentine reactants are ground to
powder, heat-treated, and held at elevated pressure and tempera-
ture (4).* Pending further improvements, these approaches may be
too expensive in financial terms and energy expenditures (5).

The potential for in situ mineral carbonation in peridotite is
emphasized in the following simple calculation. There are
�2.9�1015 kg of CO2 in the atmosphere, up from a preindustrial
value of perhaps 2.2�1015 kg (6). In Oman, the Samail ‘‘ophio-

lite’’—a thrust-bounded slice of oceanic crust and upper man-
tle—is �350 km long and �40 km wide, and it has an average
thickness of �5 km (7). Of this volume �30% is mantle
peridotite. Adding 1 wt% CO2 to the peridotite would consume
1⁄4 of all atmospheric CO2, an amount approximately equivalent
to the increase since the industrial revolution. Converting all Mg
cations in the peridotite to carbonate would consume �7�1016 kg
(77 trillion tons) of CO2. Similarly large ophiolites are in Papua
New Guinea (�200 � 50 km in area), New Caledonia (�150 �
40 km), and along the east coast of the Adriatic Sea (several
�100 � 40 km massifs).

Mantle peridotite is ordinarily beneath the Earth’s crust, �6
km below the seafloor and 40 km below the land surface. It is
strongly out of equilibrium with air and water at the Earth’s
surface. Its exposure via large thrust faults along tectonic plate
boundaries creates a reservoir of chemical potential energy. Fyfe
(8) proposed that exothermic hydration (forming serpentine
minerals) can heat peridotite. His idea has recently been invoked
to explain the heat source for �90 °C fluids at the Lost City
hydrothermal vent system near the Mid-Atlantic Ridge (9), and
evaluated theoretically (10, 11). Below, we show that carbonation
of peridotite generates more power than hydration because of
larger enthalpy changes and faster reactions between 25 and
200 °C. Temperatures necessary for rapid reaction can be sus-
tained via exothermic carbonation, instead of an external heat
source.

Natural Peridotite Hydration and Carbonation
Mantle peridotite is composed largely of the minerals olivine
[(Mg,Fe)2SiO4] and pyroxene [(Ca,Mg,Fe)2Si2O6], which react
with H2O and CO2 near the Earth’s surface to form hydrous
silicates (serpentine), Fe-oxides (magnetite), and carbonates
(calcite, magnesite, and dolomite). Such reactions may generally
be formulated as:

2Mg2SiO4

Mg-olivine �
Mg2Si2O6

Mg-pyroxene � 4H2O �
2Mg3Si2O5�OH�4

serpentine

[1]

Mg2SiO4

Mg-olivine � 2CO2 �
2MgCO3

magnesite �
SiO2

quartz [2a]

Mg2SiO4

Mg-olivine �
CaMgSi2O6

CaMg-pyroxene � 2CO2 � 2H2O

�
Mg3Si2O5�OH�4

serpentine �
CaCO3

calcite �
MgCO3

magnesite [2b]
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Evidence for natural, low-temperature hydration and carbon-
ation of mantle peridotite can be found in springs and associated
travertines in catchments composed of mantle peridotite (12–
19), and in outcrops of altered peridotite with abundant car-
bonate veins (e.g., refs. 20–26). High alkalinity, stable isotope
ratios, and formation of travertine and carbonate cemented
conglomerates in springs (Fig. 1A) indicate ongoing serpentini-
zation involving meteoric water at low temperature. In addition
to travertine at springs, carbonate veins are also found within
host peridotite (Fig. 1 B and C).

Vein and travertine formation are linked (e.g., refs. 15–19).
Groundwater reacting with peridotite in near-surface, open
systems forms water rich in Mg and HCO3

�, which we call Type
1 waters, according to Barnes and O’Neil (18). When these
waters become isolated from the atmosphere, continued reac-
tion with peridotite leads to precipitation of abundant magnesite
and dolomite as veins; the resulting waters become progressively
richer in Ca and OH�, and impoverished in dissolved carbon,
approaching a pH of 12. When these Ca-OH�-rich, carbon-poor,
Type 2 waters emerge near the surface, to mix with Mg-HCO3

�

waters or react with the atmosphere, they precipitate abundant
calcite and dolomite in near-surface veins, carbonate cement in
unconsolidated sediment, and travertine.

Rate of Peridotite Carbonation in the Samail Ophiolite, Oman
The rate of CO2 uptake via weathering of peridotite is poorly
known. We sampled solid carbonate forming from peridotite
over a wide area in the Samail ophiolite [Fig. 2 and supporting
information (SI) Table S1], including veins from ridges far from
present day springs as well as currently forming travertine.
Previous workers inferred that most veins far from present-day
springs are 30–90 million years old, related to formation of
oceanic crust, emplacement of the ophiolite, and Eocene exten-
sion (e.g., refs. 15, 21, 22, 27). However, all of our samples have
14C ages from 1,600 to 43,000 years, similar to the previously
measured range of 840 to 36,000 years in the vicinity of a single,
actively forming travertine in Oman (28). Samples of veins from
ridges are mainly composed of dolomite and magnesite. In
general, they are somewhat older than calcite-rich travertine and
calcite-dolomite veins near active springs. However, the vein

samples have an average age of �26,000 years, with a fairly ‘‘f lat’’
age distribution (Fig. 3), and none are too old to date with 14C.

The observed volume of carbonate terraces and veins in the
Samail ophiolite, together with their ages, can be used to
estimate the rate of CO2 uptake via formation of solid carbonate

A B

C

Fig. 1. Photographs of travertine and carbonate veins in Oman. (A) Actively
depositing travertine near the village of Falaij (22.846°N, 58.056°E) with rock
hammer for scale, altered peridotite in the background. (B) White carbonate
veins weathering out in positive relief in altered peridotite at ‘‘Duck’’
(22.815°N, 58.838°E) with pocket knife for scale. (C) White carbonate veins in
altered peridotite north of the village of Batin (22.925°N, 58.671°E) with pencil
for scale.
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Fig. 2. Geologic map of the Oman ophiolite (8), with locations of carbonate
samples dated by using 14C (red circles, Table S1) and locations of known
travertine deposits in the Bahla, Samail, and Wadi Tayin ophiolite massifs
[blue squares; for perimeter maps of the ‘‘Duck,’’ Kharma and Falaij traver-
tines, see Fig. S1; for more information on the Jill travertine deposit, see Clark
and Fontes (28)]. Based on our observations of these 3 southernmost massifs,
we infer that there are at least 45 similar travertine deposits in the entire
ophiolite. We only show locations of travertine deposits that we have per-
sonally observed, and there are probably many more even in the southern
massifs. In addition to travertine deposits on the surface (Fig. 1A, with
locations shown here), there are thick travertine deposits forming within
alluvial and gravel terraces (examples in Fig. 4).
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Fig. 3. Combined histogram of 14C ages for our samples (Fig. 2, Table S1) and
those of Clark and Fontes (28). The Clark and Fontes samples were taken from
a single actively forming travertine deposit near the village of Jill, and car-
bonate veins in the underlying peridotite within a few meters of the
travertine.
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minerals in 2 ways. First, we can estimate the mass of veins
directly, and divide this by their average age. Poupeau et al. (29)
estimated an erosional denudation rate of �0.3 mm/yr for
northern Oman. The ages of carbonate veins in peridotite
suggest that veins form mainly in a thin weathering horizon that
keeps pace with erosion; this horizon must generally be �15 m
thick (erosion rate �0.0003 m/yr � maximum age of carbonate
veins �50,000 years). Newly created road cuts in Oman perido-
tites reveal abundant, submillimeter carbonate veins on joint
surfaces. We measured the vein abundance as �1 vol% in
transects along road cuts (Table S2); 1% of the volume of
a 15-m-thick weathering horizon in the Oman peridotite
corresponds to �1012 kg of CO2, for an average CO2 uptake of
�4�107 kg/yr.

We can independently estimate the mass of travertine formed
at and near the surface by alkaline springs, and infer the
associated mass of carbonate veins far from the surface that must
be formed during recharge of these springs. Based on our
relatively detailed, although incomplete, mapping in the south-
ern third of the ophiolite, we estimate that there are �45
travertine terraces in the Samail ophiolite (Fig. 2) that are �1 m
thick, with exposed areas �200,000 m2 (Fig. S1), comprising a
total of �107 m3 of exposed travertine. Travertine extends
beneath alluvium downslope from outcrop areas, and travertine
deposits are underlain by a zone �10 m thick with �5%
calcite-rich veins (Table S2), so that their total volume is
probably �2.5 times the exposed volume. Near-surface deposits,
similar in composition and age to the travertine terraces, occur
as massive carbonate bands, veins, and cement in alluvial ter-
races and conglomerates with peridotite clasts (Fig. 4). The
volume of carbonate cement derived from Ca-OH� waters in
peridotite sediments is hard to estimate, but is at least as large
as the volume of travertine terraces. All of these factors, taken
together, suggest that the volume of near-surface travertine and
carbonate in peridotite sediments in Oman is �5.5�107 m3 or
more, corresponding to at least �1011 kg of CO2.

Spring waters and shallow groundwater in peridotite catch-
ments fall into 2 compositional groups, as discussed above and
illustrated in Fig. S2. We can estimate carbonation rates from
water compositions, assuming (i) all carbon in type 1 waters is
consumed to form solid carbonate during formation of type 2
waters, and (ii) the difference in Ca between type 2 and type 1
waters is precipitated as calcite when type 2 waters reach the

surface. In California, type 1 waters have �0.2 mmol of Ca per
liter, and up to 24 mmol of carbon per liter (19). Type 2 waters
have essentially no carbon, and �1.5 mmol Ca per liter (Fig. S2).
Thus, for every mole of calcite near the surface, up to �24/(1.5–
0.2) or 18 mol of magnesite form in the subsurface.

There is a maximum of �8 mmol/L, carbon in Oman Type 1
waters, lower than in California, whereas Ca concentration is
�0.8 mmol/L, higher than in California. There is essentially no
carbon, and �1.6 mmol Ca in type 2 waters in Oman. It is not
clear whether these values reflect lower carbon concentrations in
Oman waters compared with those in California, or whether
end-member type 1 waters in Oman have not yet been sampled.
If, for every mole of near-surface calcite, 8/(1.6–0.8) or 10 mol
of magnesite are precipitated as veins, this yields �1012 kg of
CO2 in veins, consistent with the estimate derived from mea-
sured vein abundance and the inferred thickness of the veined
horizon.

In summary, estimates of the volume of carbonate deposits
formed during ongoing weathering of peridotite, and their
average age of 26,000 years, indicate that �4�107 kg of atmo-
spheric CO2 per year are consumed via mineral carbonation in
the Samail ophiolite, or �2 tons/km3 of peridotite. This strikingly
rapid rate is compared with CO2 flux in rainwater and ground-
water, and discussed further in the SI Text. Here, we emphasize
that a factor of 100,000 increase in this rate could consume 4
billion tons of CO2 per year, �10% of the annual increase in
atmospheric CO2 because of anthropogenic emissions, via car-
bonation of peridotite in Oman.

Enhancing Rates of Peridotite Carbonation in Situ
In this section, we propose and evaluate ways to increase CO2
uptake in situ in tectonically exposed peridotite massifs. In the
Samail ophiolite and other large massifs, an obvious approach is
to increase the depth of the weathering horizon by a factor of
200, from �15 m to �3 km in the peridotite via drilling and
hydraulic fracture (30). Additional fracture may be anticipated
as a result of thermal expansion during heating (31), volume
increase during hydration (32–34), and volume increase during
carbonation. Carbonation of olivine (Eq. 2b) results in �44%
increase in the solid volume, which can lead to enormous stresses
that may be relieved by cracking and additional expansion (Fig.
1 B and C).

An additional increase in the carbonation rate, by a factor of
� �106, could be achieved by raising the temperature of the
peridotite and injecting CO2-rich fluids. There is an optimal
temperature for peridotite carbonation. Heating from low tem-
perature speeds the diffusive kinetics of hydration and carbon-
ation. However, the chemical potential driving the reaction is
reduced as the temperature approaches the equilibrium phase
boundary for serpentine or carbonate mineral stability. The
combined effect yields a maximum reaction rate at a tempera-
ture intermediate between surface conditions and the equilib-
rium phase boundary (Fig. S3). The reaction rate for serpenti-
nization as a function of temperature has a maximum value at
�260 °C over a range of pressure (35), whereas the rate of
carbonation is optimized at, for example, 185 °C and 150 bars
CO2 pressure.* We fit data on rates of serpentinization of olivine
with grain size 58–79 �m (35) and carbonation of olivine with
grain size �75 �m* as a function of temperature and CO2 partial
pressure, yielding a serpentinization rate (Fig. S4)

� � 0.00000100exp� � 0.000209�T � 260	C�2
 [3]

and a carbonation rate (Fig. S5 and Fig. S6).

� � 1.15�10�5�P�CO2� ,bars�1/2exp� � 0.000334�T

� 185	C�2
 [4]

A

C

B

Fig. 4. Carbonate veins and massive travertine ‘‘inflating’’ carbonate-
cemented, peridotite cobble conglomerate (A; 22.9845°N, 58.6322°E) and
young alluvial fan deposits (B; 22.902°N, 58.371°E). Sampling stalactites form-
ing beneath overhang in peridotite cobble conglomerate (C; 22.9875°N,
22.6327°E).
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both in units of mass fraction per second. Heating and raising
the partial pressure of CO2 can increase the carbonation rate by
a factor of �106 (Fig. 5), and with the potential for increasing the

thickness of the weathering horizon by fracturing, the overall
increase could be a factor of �109. Together with the estimated
present-day CO2 uptake at the end of the previous section, this
corresponds to 2�109 tons/km3 per year.

Thermal Effects of Advection, Diffusion, and Reaction
The change in temperature for a particular volume in a subsur-
face, porous aquifer can be approximated in 1 dimension as

dT/dt � �Tin � T�� fCp
f �w /�� sCp

s d� � �T � To�� /d2

� ��T�A�H /�Cp
s �1 � �� � Cp

f ���
 [5]

where Tin is the temperature of incoming water or aqueous
fluid (°C or Kelvin), T is the current temperature in the volume,
To is the far-field temperature, outside the volume, which is
equal to the initial temperature in the volume, �f and �s are the
densities of the fluid and solid, Cp

f and Cp
s are the heat capacities

of the fluid and solid, � is the porosity or volume fraction of fluid
(nondimensional, 1% in all calculations shown here), w is
the fluid flow velocity (m/s), d is the dimension or ‘‘size’’ of the
volume (m, 1,000 m in all calculations shown here), � is the
thermal diffusivity (10�6 m2/s), � is the reaction rate, which is a
function of temperature (units of 1/s), A is the fraction of the
rock available for reaction in the volume (nondimensional), and
�H is the enthalpy change due to reaction. The use of a reactive
volume fraction term �1 accounts for the fact that most natural
rocks do not have an effective grain size of �70 �m, unlike the
experiments used to calibrate Eqs. 3 and 4. The volume available
for reaction is product of a diffusion distance times the surface
area of grains. The surface area is proportional to the radius
squared, so the use of a reactive volume fraction of 0.01%
corresponds to modeling of an effective ‘‘grain size’’ or fracture
spacing of �7 mm, 100 times larger than in the experiments.
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17298 � www.pnas.org�cgi�doi�10.1073�pnas.0805794105 Kelemen and Matter



For these calculations, densities, heat capacities, and enthal-
pies were obtained from standard references reviewed and
updated by Gottschalk (36) and similar data from the National
Institute of Standards (NIST) Chemistry WebBook (NIST Stan-
dard Reference Database Number 69, June 2005 Release) at
http://webbook.nist.gov/chemistry/. For our calculations, we fit
simple functions to the temperature dependence of thermody-
namic properties from 25 to 300 °C. For H2O and CO2, we used
300 bars pressure for the calculations discussed in this section.
Above 300 °C, and far from this pressure, our calculations would
be inaccurate.

Fig. 6 illustrates results from Eq. 5 in terms of temperature
change, dT/dt, versus initial temperature, for fluid porosity of
0.01 (1%), fluid temperature of 25 °C at 300 bars pressure, with
reactive volume fraction A of 0.01%. At high flow rates with cold
(25 °C) fluid, the volume cannot be heated by exothermic
reactions. At low flow rates, advective cooling is negligible, and
temperature is controlled by exothermic heating and diffusive
cooling. To optimize olivine carbonation rates, f luid flow should
be adjusted to yield dT/dt  0 at �185 °C. Heating due to
hydration (serpentinization) is less effective than heating due to
carbonation. This is partly because, for example, at1 bar and
25 °C, �H is �250 kJ/kg for serpentinization (Eq. 1), whereas
carbonation (Eq. 2) evolves �760 kJ/kg, and partly because
serpentinization is slower than carbonation for temperatures
between 25 and 185 °C (Fig. 5).

Recipes for in Situ Carbonation of Peridotite
One approach is to take maximum advantage of the exothermic
heat output available from the carbonation reaction, by raising
a rock volume to the optimal temperature for peridotite car-
bonation. To reach and maintain 185 °C, it is necessary to
preheat the rock volume. This can be achieved via a variety of
flow rates, f luid temperatures, and fluid compositions. Initial
heating should probably be via high flow rates by using pre-
heated fluids. Later, because large volumes of rock are to be held
at 185 °C to optimize CO2 uptake, output fluid can be used to
heat other areas. This may happen spontaneously as hot fluid
flows into colder, surrounding rock.

Because pumping rates for 25 °C fluid must remain low to
maintain high temperature, dissolved CO2 in surface water
cannot be supplied rapidly enough to keep pace with the
enhanced carbonation rates modeled here. Instead, injection of

pure CO2, or a CO2-rich fluid mixture, is required to keep pace
with the enhanced reaction rate. As seen in Fig. 6, dT/dt resulting
from carbonation is zero at 185 °C when the flow rate of pure
CO2 injected at 300 bars and 25 °C is �0.040 m/s and the reactive
volume fraction is 0.01%. At these conditions, our 1-dimensional
model delivers �0.166 kg of CO2 per s to a 1 � 1 � 1000 m3 rock
volume, and consumes �0.127 kg of CO2 per s to form solid
magnesite. All olivine is consumed after �190 days, consuming
�2,000 tons of CO2 per 1,000 m3, or—scaling up—2�109 tons of
CO2 per km3 at �4�109 tons/yr. Note that this is an independent
estimate of CO2 uptake, which is consistent with the rate of
�2�109 tons/km3 per year derived at the end of the section
entitled Enhancing Rates of Peridotite Carbonation in Situ.

Fig. 7 provides an example of a 3-step process, with drilling
and hydrofracture of peridotite at depth, followed by injection of
hot fluid to heat the newly fractured peridotite to 185 °C,
followed in turn by injection of pure CO2 at 25 °C to sequester
carbon whereas exothermic carbonation maintains the system at
185 °C. Our simple calculations show that a factor of more than
1 million enhancement in the carbonation rate is achievable.
Note that we have not incorporated the ‘‘cost-free’’ heating
afforded by the geothermal gradient; if northern Oman lies along
a typical continental geotherm of 10–20 °C/km (37), then the
initial temperature at the bottom of a 3-km drill hole will be
55–85 °C, not the initial 25 °C used in our model. Indeed, Neal
and Stanger (15) report that alkaline springs in Oman peridotites
have temperatures up to 15 °C hotter than normal groundwater
in the same locations, and infer that the alkaline waters have
been heated during circulation at depths of 700 m or more.

Our calculations are done assuming that the reactive volume
fraction is constant, whereas, in practice, reactive surfaces may
become depleted. It may be necessary to reduce the fluid flow
rate as this occurs, to avoid cooling the reacting volume. At some
point, in particular, if reaction-driven cracking does not occur, it
may be necessary to hydraulically fracture the system again to
expose additional reactive surface area. More optimistically,
temperature change and the large increases in solid volume due
to mineral hydration and carbonation will cause cracking and
increased permeability. In any case, eventually all accessible
olivine in a given rock volume will be depleted. Before this
occurs, f luid heated by reaction in 1 region can be pumped into
an adjacent area to begin the process anew.

An alternative process could avoid prolonged pumping of
fluid and use of purified CO2. In Oman, New Caledonia, and
Papua New Guinea, peridotite is present beneath a thin veneer
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Fig. 7. Calculated temperature and carbonation rate, relative to the rate at
25 °C for CO2 in surface water at equilibrated with the atmosphere at 1 bar, for
a 3-step method beginning with drilling and hydraulic fracture, followed by
heating via rapid pumping of 185 °C CO2, followed by slower pumping of
25 °C CO2 to maintain constant temperature.

roolfaes

Fig. 8. Schematic representation of 2 bore holes into peridotite below the
seafloor, connected by a fracture network. Color gradients below the seafloor
represent temperature variation with blue indicative of �0–25 °C and red
indicative of �150 °C. As a result of thermal convection, near-surface seawater
would descend one hole (with a controlled flux) and rise through the other.
At depth, the water would be heated by the geothermal gradient and by
exothermic serpentinization and carbonation reactions. Mineral carbonation
in the peridotite would consume dissolved CO2 from evolving seawater along
the flow path.
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of sediment offshore. Here, peridotite could be drilled and
fractured, and a volume could be heated. Again, little heating
would be required if, for example, the initial temperature at the
bottom of a 5-km bore hole is 100 °C (Fig. 8). Then, controlled
convection of near-surface water through the rock volume could
sustain high temperature via exothermic hydration of olivine at
a flow rate of �4�10�6 m/s (as seen in Fig. 3 Right). The
carbonation rate would be limited by supply of dissolved CO2 in
convecting seawater—only �104 tons of CO2 per km3 of peri-
dotite per year at a flow rate of 4�10�6 m/s—but the cost would
be relatively low.

Conclusion: Promising Alternatives to ex Situ
Mineral Carbonation
Because these proposed methods of in situ mineral carbonation
use the chemical potential energy inherent in tectonic exposure
of mantle peridotite at the Earth’s surface, the optimal temper-
ature for carbonation can be maintained in a rock volume at little
expense. Further, rock volumes at depth are, inherently, at
relatively high pressure and elevated temperature. Thus, com-
pared with engineered, mineral carbonation ‘‘at the smoke-
stack,’’ this method does not involve quarrying and transporta-
tion of peridotite, processing of solid reactants via grinding and
heat treatment, or maintaining high temperature and pressure in
a reaction vessel. Instead, the major energy investments in this
method would be for drilling, hydraulic fracturing, pumping
fluid, preheating fluid for the first heating step, and purification

of CO2. Also, unlike ex situ mineral carbonation, this method
may require on-site CO2 capture or transport of purified CO2 to
the in situ carbonation locality.

Clearly, more elaborate models combined with field tests will
be required to evaluate and optimize this method. For example,
it is difficult to predict the consequences of hydraulic fracturing
of peridotite, plus cracking associated with heating, hydration,
and carbonation, in terms of permeability and reactive volume
fraction. Such processes are all-but-impossible to simulate in the
laboratory. Large-scale field tests should be conducted, because
the proposed method of enhanced natural CO2 sequestration
provides a promising potential alternative to storage of super-
critical CO2 fluid in underground pore space, and to engineered,
ex situ mineral carbonation.
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