Data entrega: dia 25 de Junho de 2010 na aula (se não puder vir à aula, ponha no cacifo do docente ou envie ficheiro por e-mail)

Cálculo Financeiro Avançado

Equações Diferenciais Estocásticas e Aplicações

Equações Diferenciais Estocásticas e Aplicações Biológicas

- 1. Determine a média e a variância de $X_t = \int_0^t s \exp(-W_s) dW_s$.
- 2. Mostre que

$$\int_0^t \exp(-W_s) ds + \frac{1}{2} \int_0^t s \exp(-W_s) ds - t \exp(-W_t) = \int_0^t s \exp(-W_s) dW_s.$$

Sugestão: Aplique o teorema de Itô a $Y_t = t \exp(-W_t)$.

- 3. Seja $Y_t = tW_t$. Determine dY_t e aproveite o resultado para mostrar que $\int_0^t s dW_s = tW_t \int_0^t W_s ds$.
- 4. Mostre que a equação dY(t) = Y(t)dW(t) com Y(0) = 1 tem solução $Y(t) = \exp(W(t) t/2)$ para t≥0.
- 5. Considere o modelo de Black-Scholes

$$dX(t) = rX(t)dt + \sigma X(t)dW(t)$$
$$X(0) = x_0 = 5,30 \in$$

com r=0.04/ano e $\sigma^2=0.02$ /ano.

- a) Determine $P[X(10 \text{ anos}) > 8,00 \in]$.
- b) Simule 100 trajectórias de X(t) para t no intervalo [0, 10] anos e veja quantas delas verificam a propriedade de X(10 anos)>8,00 €.
- c) Determine $P[X(10 \text{ anos}) > 8,00 \in |X(9 \text{ anos}) = 7,50 \in X(5 \text{ anos}) = 4,83 \in]$.
- 6. A equação diferencial estocástica

$$dX(t) = rX(t) \left(\ln K - \ln X(t) \right) dt + \sigma X(t) dW(t)$$
$$X(0) = x_0 > 0,$$

com r, σ , K > 0 é muito utilizada para modelar o crescimento de populações em ambiente aleatório com recursos limitados. Note-se que o modelo determinístico (que se obtém quando σ =0) é o conhecido modelo de Gompertz, convergindo o tamanho da população para um valor de equilíbrio K quando $t \rightarrow +\infty$. Este mesmo modelo, embora com uma parametrização diferente, é utilizado para taxas de juro a curto prazo (modelo de Black-Berman-Toy).

- a) Resolva explicitamente a equação.
- b) Determine a distribuição transiente de $Z(t)=\ln X(t)$.
- c) Determine a distribuição estacionária de Z=ln X.

Exercícios suplementares

Nota: Os exercícios assinalados com * são de grau de dificuldade mais elevada (só recomendados a estudantes com boa formação matemática)

- 6. * Para decomposições $0=t_{n0}< t_{n1}< ... < t_{nn}=t \ (n=1,2,...)$ de [0,t] com diâmetro a tender para 0, mostre que $\sum_{k=1}^{n} W(t_{nk}) \Big(W(t_{nk}) W(t_{n,k-1}) \Big) \xrightarrow{m.q.} \frac{1}{2} \Big(W^2(t) + t \Big)$.
- 7. * Mostre que a classe das funções em escada de $H_2[0,t]$ é um subespaço vectorial de $H_2[0,t]$.
- 8. * Mostre que, dadas quaisquer funções G_n (n=1,2,...) de $H_2[0,t]$ convergentes para $G \in H_2[0,t]$ na norma deste espaço, vem $\int_0^t G_n(s)dW(s) \xrightarrow{m.q.} \int_0^t G(s)dW(s)$.
- 9. * Mostre que, se $X_1(t)$ e $X_2(t)$ são processos de Itô e $Y(t) = X_1(t)X_2(t)$, então $dY(t) = X_1(t)dX_2(t) + X_2(t)dX_1(t) + (dX_1(t))(dX_2(t))$.
- 10. Considere o modelo de Black-Scholes

$$dX(t) = rX(t)dt + \sigma X(t)dW(t)$$
$$X(0) = x_0 = 5,30 \in$$

com $r=0.04/\text{ano e } \sigma^2=0.02/\text{ano}$.

- a) Simule 2 trajectórias.
- b) Suponha que não conhecia r e σ^2 e que os seus dados reais eram uma dessas trajectórias. Determine um intervalo de confiança a 95% para $R=r-\sigma^2/2$ e $V=\sigma^2$. [Se o trabalho de aplicação for sobre dados reais e estimação destes parâmetros, não se justifica fazer este exercício, pois seria repetitivo].
- c) PARA FAZER MAIS TARDE. Determine $P[T_4 \leqslant T_6 \leqslant]$, onde T_a é o tempo de primeira passagem de X(t) por a.