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Abstract.
We use twistor theory to describe virtualy new constructions of Hermitian and quaternionic

Kähler structures on tangent bundles and a G2 structure on the unit sphere tangent bundle of a
Riemannian 4-manifold — fundamental to holonomy theory and subject of deep research in physics.

We interpret “self-holomorphic” complex structures on a symplectic manifold. These complex
structures give an interesting set of problems in the first possible dimension, the case of Riemann
surfaces, from which should follow some interplay with Teichmuller theory, as well as with SL(2)
connections.
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Introduction

Twistor theory can be applied in several situations. With M. Berger’s classification of
non-symmetric, locally irreducible Riemannian holonomy groups in mind and looking
forward for more recent studies of geometry with torsion, we were lead to the twistorial
construction of old and new theories on well known bundles.

Firstly, Sp(n)Sp(1) holonomy in T M where M is any 2n-dimensional almost-
Hermitian manifold. Secondly, a G2 structure in SM, the unit sphere tangent bundle of a
4-dimensional Riemannian manifold M. The present introduction follows with a sketch
of the theory behind the first case. But strongly related to the second is equation (2).

Quaternionic Kähler structures. Recall Hn with right action of Sp(1), which is the
model of a quaternionic Hermitian or H-module. Its automorphisms constitute a sub-
group Sp(n) ⊂ SO(4n). The product subgroup Sp(n)Sp(1) consists of those isometries
g for which g(vw) = g(v)w′ for any vector v and scalar w ∈H and some scalar w′. One
can prove Sp(n)Sp(1) coincides with Sp(n)×Z2 Sp(1).

An oriented Riemannian 4n-manifold M is said to be quaternionic Kähler if its
holonomy is inside Sp(n)Sp(1) (we start with n > 1). We are saying M admits a
quaternionic Hermitian structure, ie. there is a H-structures on TxM smoothly varying
with x ∈ M. Such global definition means there exist locally three mutually orthogonal
almost Hermitian structures I,J and K = IJ =−JI generating a global endomorphisms
vector bundle associated to sp(1).



As it is well known from holonomy theory, the stated condition corresponds with
∇g ⊂ g where g is (the bundle associated with) the Lie algebra of Sp(n)Sp(1). As the
whole structure arises from the Sp(1) action, g = sp(n)⊕ sp(1) is closed under ∇ iff
∇sp(1)⊂ sp(1) (cf. [19]).

Any two quaternionic triples I,J,K, I′,J′,K′ on open subsets U,U ′, respectively, and
defining the same Sp(n)Sp(1)-structure are related on U ∩U ′ by a map into SO(3).
Denoting the 2-form ωI(X ,Y ) = 〈IX ,Y 〉 and ωJ,ωK analogously, we get a well defined
4-form easily seen not to depend on the choice of I,J,K,

Ω = ωI ∧ωI +ωJ ∧ωJ +ωK ∧ωK. (1)

A straightforward computation yields, in the quaternionic Kähler case, dΩ = 0.
We recall that Sp(n)Sp(1) is also proved to be the set of isometries of a 4n-

dimensional Euclidian fixed vector space for which a non-degenerate 4-form Ω like (1)
remains invariant (V. Kraines). Thus the holonomy condition is satisfied if, and only if,
∇Ω = 0. Fortunately, it was proved in [21] that, when n > 2, the equation dΩ = 0 is also
a sufficient condition for Sp(n)Sp(1)-holonomy. Counter-examples in dimension n = 2
have been found.

Hyperkähler manifolds. A Riemannian manifold is called hyperkähler if its holon-
omy is in Sp(n). In this case we may construct a global quaternionic triple I,J,K. Now
the equation for holonomy reduction ∇sp(n) ⊂ sp(n) implies reduction to the unitary
Lie algebra or simply ∇I ∈ u(2n, I) — the orthogonal of sp(n) in u is also preserved —,
which combined with I2 = −1 gives ∇I = 0. The same must hold for J, and hence for
K. Reciprocally, from ∇I = ∇J = 0 we arrive to hyperkähler holonomy.

As it is well known, the condition is equivalent to the metric on M being Kähler with
respect to each almost complex structure.

In real dimension 4. Here we have Sp(1)Sp(1) = SO(4). Hence an oriented Rie-
mannian 4-manifold M has a natural quaternionic Hermitian structure.

Since any triple I,J,K is identified to an orthonormal basis of the bundle Λ2
+ of self-

dual two forms and since ∇∗= ∗∇, the structure is parallel. If we select a vector field U
with ‖U‖= 1, then the H-module structure on T M is given by

X1 ·X2 = (λ1λ2−〈A1,A2〉)U +λ1A2 +λ2A1 +A1×A2 (2)

where Xi = λiU +Ai, Ai ∈U⊥, i = 1,2, and 〈A1×A2,A3〉= vol(U,A1,A2,A3).
The name quaternionic Kähler is only given if the 4-manifold is self dual and Einstein.

Such are the curvature properties of any other quaternionic Kähler metric. A hyperkähler
manifold satisfies further strictness: it is self dual and Ricci flat.

T M as a Kähler or quaternionic Kähler manifold

Let M be any Riemannian manifold and D any linear metric connection on M. There
exists a canonical vertical vector field ξ defined on the manifold T M:

ξv = v, ∀v ∈ T M, (3)



under the identification of π∗T M ' V = ker(dπ : T T M → π∗T M), where π : T M →M
is the canonical projection. The connection D induces a splitting T T M = H D⊕V .

We refer to twistor theory as used in [3, 4], after [18], where a similar canonical
section ξ is defined. We use the results X ∈ H D ⇔ (π∗D)X ξ = 0. Essentially, one

proves that ξ varies exactly on vertical directions. Ofcourse, H D dπ' π∗T M.
For a given vector field X ∈ XM and vector u ∈ TxM, the theory gives us a projection

map π∗D·ξ and thus (dX(u))v = π∗DdX(u)ξ = (X∗π∗D)uX∗ξ = DuX .
We endow T M with the canonical connection-induced metric; a metric connection

D∗ follows and both tools preserve the above splitting. One may write the Levi-Civita
connection ∇ of T M as a function of ξ , of the curvature and of the torsion of D ([4]).

First complex structure on T M. The following map I(X ,Y ) = (Y,−X), X ∈
H D, Y ∈ V is a compatible almost complex structure on T M. For the moment we have
D∗I = 0.

Theorem 1 (partly [10], [4]). (i) (T M, I) is a complex manifold iff D is torsion free and
flat. If any of these occur, then M is a flat Riemannian manifold and T M is Kähler flat.
(ii) ωI is closed iff D is torsion free.

Notice ωI over T M looks like the natural closed symplectic structure on the (co)-
tangent bundle of any smooth manifold. These two are the same iff we consider the
Levi-Civita connection of M.

Second complex structure, or a pair of them. Let (M,J ) be an almost Hermitian
manifold of dim m = 2n. Let D denote a linear Hermitian connection: DJ = 0.

We then define two almost complex structures on T M, denoted by J±: admiting again
the decomposition of T T M into H D⊕V we write

J± = J ⊕±J . (4)

We let, as it is usual, T ′M denote the +i-eigenbundle of J .

Theorem 2 ([4]). (i) J+ is integrable iff J is integrable and RD
u,vw = 0, ∀u,v,w ∈ T ′M.

(ii) J− is integrable iff J is integrable and RD
u,vw = 0,∀u,v,w ∈ T ′M.

(iii) (T M,ωJ±) is symplectic iff the Hermitian connection D is flat and its torsion has no
totally skew-symmetric part and is (3,0)+(0,3) with respect to J .

Third complex structure on T M. Consider the same setting as above and define J
to be J−. Consider also the previous complex structure I. Then K = IJ = −JI is a new
D∗-parallel almost complex structure.

Theorem 3 ([4]). (i) K is integrable iff D is flat and torsion free iff (M,J ) is a flat
Kähler manifold.
(ii) (T M,ωK) is symplectic if, and only if, D is torsion free. The same is to say (M,J )
is Kähler.
(iii) Suppose n > 2. Then the following three assertions are equivalent: (T M, I,J,K)
is a quaternionic Kähler manifold; D is flat and torsion free; (M,J ) is a flat Kähler
manifold. In any one of the previous cases, T M is a hyperkähler manifold.



A family of quaternionic Kähler structures on T M. Here we assume we have a
4n manifold M endowed with a quaternionic triple J1,J2,J3; Let D be the Obata
connection: characterized by solving simultaneously DJi = 0, i = 1,2,3.

Now let I0 = I be the first complex structure on T M and let Ii = Ji⊕−Ji, ∀i =
1,2,3, as the case J− above. Notice I3 6= I1I2 = −I2I1. However, the whole four Ii anti-
commute with each other. Hence for each pair a,b ∈ S3, a ⊥ b, we have a quaternionic
triple (Ia, Ib, Ia,b) given by

Ix = x0I0 + x1I1 + x2I2 + x3I3, ∀x = a,b, and Ia,b = IaIb. (5)

It is easy to verify I2
x = −1 and IaIb = −IbIa. A bundle with fibre the Stiefel manifold

V 4
2 may thus be considered.
These structures are again quaternionic Kähler iff D is flat and torsion free. We have

proved that there is a Hopf extension bundle {Ix} → T M of the usual S2-twistor bundle
of a quaternionic Hermitian structure on M.

Self-holomorphic complex structures. Within the theory of bundles of complex
structures, we recall the twistor space Z of ω-compatible j’s over a symplectic mani-
fold M with ω as the Kähler form. Compatible means j ∈ EndT M with j2 =−1 and for
which ω is type (1,1) and the metric ω( , j )À 0. The study of Z was done in [2]. For
a Riemann surface M, Z is a Poincaré-disk bundle and the twistor complex structure
J ∇ is always integrable. Recall this is induced just from a connection on M for which
∇ω = 0. So it is a SL(2,R)-connection.

We may then think of the self-holomorphic sections J : M →Z in any dimension:

dJx(JX) = J ∇
J(x)dJ(X), ∀X ∈ TxM. (6)

This is equivalent to ∇X′X
′ ⊂ X′, where X′ = Γ(M;T ′M). If ∇ is torsion free, then a

self-holomorphic section is integrable. The Gauss curvature of the induced metric is still
to be computed.

G2 structures

Recall the exceptional Lie group G2 = AutO. The normed division algebraO=H⊕H
has product given, essentially, by mimic of the product rule of two pairs of real numbers
which gives the complex line; or by mimic of the product rule of two pairs of complex
numbers which gives the H-line (such is the known Cayley-Dickson process, cf. [12]).

The imaginary part of the octonions is a subspace R7, where G2 acts irreducibly.
There is a well defined non-degenerate 3-form on this space: φ(X ,Y,Z) = 〈X ·Y,Z〉 and
G2 = {g ∈ SO(7) : g∗φ = φ}. These concepts all translate into a special geometry,
namely that of 7-dimensional G2-structures.

It was shown that an oriented Riemannian 7-manifold with a G2-structure, clearly
given by any non-degenerate 3-form φ , has holonomy in the exceptional group, apriori
given by equation ∇φ = 0, if, and only if, φ is harmonic – a result of [11]. But less
stringent G2 classes of 7-manifolds with such a structure are given by the torsion forms



of dφ and δφ . These are irreducible components under the group action on Λ4 and Λ2

(cf. [9, 11]).

The unit sphere tangent bundle of a 4-manifold. We have found one canonical
structure of the twistorial kind. Let M be an oriented Riemannian 4-manifold and let
SM = {u ∈ T M : ‖u‖= 1} π→M. let D be the Levi-Civita connection on M generating
H D ' π∗T M. Let V = kerdπ . Then Vu ⊥ u inside π∗T M since u ∈ SM is the unique
vertical direction orthogonal to SxM ⊂ TxM, x = π(u). We then have an octonionic
structure on

Ru⊕TuSM = H D⊕V ⊕Ru (7)

induced by (2), with Uu = u, and the Cayley-Dickson process (see [3] for details).
To have a closer perception we give a hint of φ . Locally, we find a direct o.n. horizontal

frame e0,e1,e2,e3, with e0 corresponding to the point u. The last three vectors have
natural correspondents e4,e5,e6 in V and thence the following forms are proved to be
independent of the chosen frame:

µ = e0, β = e14 + e25 + e36, α = e456, α2 = e126 + e234 + e315 (8)

and φ = α + µβ −α2.

Theorem 4 ([2]). (i) SM is never a G2 manifold: dφ 6= 0, ∀M.
(ii) SM is a cocalibrated G2 manifold, ie. δφ = 0, if and only if M is Einstein.

This is joint work with I. Salavessa for which we hope to have further improvements
soon, possibly bringing some light on the theory of 4-manifolds.
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