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Abstract. We give a presentation of how one achieves the G2-twistor space of an oriented Rieman-
nian 4-manifold M. It consists of a natural SO(3) structure associated to the unit tangent sphere bun-
dle SM of the manifold. Many associated objects permit us to consider also a natural G2 structure.
We survey on the main properties of gwistor space and on recent results relating to characteristic
G2-connections with parallel torsion.

Keywords: metric connections, characteristic torsion, Einstein manifold, G2 structure
PACS: 02.40.Ky

The construction of the G2-structure

Recall the exceptional Lie group G2 = AutO gives birth to a special geometry. A G2
structure on a Riemannian 7-manifold S is given by a stable 3-form φ , i.e.

• ∃ vector cross product · such that φ(X ,Y,Z) = 〈X ·Y,Z〉 corresponds with the octo-
nionic product of pure imaginaries R7 ⊂O,

• φ = e456 + e014 + e025 + e036− e126− e234− e315 on some oriented orthonormal co-
frame e0, . . . ,e6, or

• φ lives in certain open GL(7)-orbit of Λ3T ∗u S .

Indeed the three statements are equivalent; the existence of such a 3-form φ , depending
on a particular type of open orbit, implies reduction to SO(7) and then reduction to G2.

Now let T be an oriented Euclidean 4-vector space and fix u ∈ S3 ⊂ T . Then T has a
quaternionic structure such that u = 1, i.e. Ru corresponds to the reals. The product is
given by

(λ1u+X)(λ2u+Y ) = (λ1λ2−〈X ,Y 〉)u+λ2X +λ1Y +X×Y.

For the cross product × on u⊥ we define 〈X ×Y,Z〉 = vol(u,X ,Y,Z). And conjugation
in T is defined by λu+X = λu−X .

Finally we have an octonionic structure:

O=H⊕ eH' Ru⊕R7 ' T ⊕T

given by the Cayley-Dickson rule:

(z1,z2) · (z3,z4) = (z1z3− z4z2,z4z1 + z2z3).



Now let M be an oriented Riemannian 4-manifold. Let

SM = {u ∈ T M : ‖u‖= 1}

and let π : T M −→M denote the tangent bundle. Since we have the classical decompo-
sition

TuSM = u⊥ ⊂ T T M = H∇⊕V '∇
π
∗T M⊕π

∗T M,

we may reproduce the whole construction above using the given volume form and the
Sasaki metric (the pull-back of the metric on M reproduced equally in horizontal and
vertical vectors and making these subspaces orthogonal). We may also consider the same
construction for any generic tangent vector u 6= 0, taking the unit to be 1 = u/‖u‖.
Theorem 1 T M\0 admits a natural octonionic structure, i.e. there exists a vector cross
product on each TuT M, for all u, reproducing the structure of O and smoothly varying
with u ∈ T M. The hyper-subspace SM admits a natural G2-structure.

It is to this last structure on SM, introduced in [5, 6], that we give the name G2-twistor
or gwistor space.

In order to find the 3-form φ of gwistor space we may proceed as follows. It is possible
to construct a local orthonormal frame e0 = u, e1,e2,e3 ∈H∇, e4,e5,e6 ∈V to write the
following global forms (their global characterization is given in the references):

vol = π
∗volM = e0123, α = volume 3-form on the fibres of SM = e456,

µ = e0, β = e14 + e25 + e36,

α1 = e156 + e264 + e345, α2 = e126 + e234 + e315,

α3 = e123, vol = µα3.

Finally φ = α +µ ∧β −α2.
A close picture to our metric structure, found in the literature, is a general contact

structure which always exists on SM. Since dµ = −β and −β is the restriction of
the natural symplectic form of T M (or the pull-back of the Liouville symplectic form
through the isomorphism with the co-tangent bundle), we have a contact structure. Let
θ tU be the reflection of the canonical vertical vector field U on H∇. It is the same as e0
and, under the previous perspective, it is the so called geodesic spray of M. The contact
structure was found by Y. Tashiro, 1969. In any dimension m = n+1, the structure

(SM,
1
4

g,
1
2

µ,2θ
tU)

refers to a metric contact 2n+ 1-manifold. Moreover, it is a K-contact structure if and
only if M = Sm

std with sectional curvature 1.

A generalization

We may generalize the whole construction above if H∇ ⊂ T T M comes from any
given metric connection ∇ on M, i.e. instead of the Levi-Civita connection. Because all
definitions are independent of the torsion.



On SM we then require the functions

r = ru = r∇(u,u), l =	1,2,3R∇
1230, m = mu = TrT ∇(u, ),

a 1-form
ρ1 = r∇( ,U) = (ricU)[,

the two 3-forms
ρ2 =	 µ(R∇( , ) ), σ =	 β (T ∇( , ), )

and the 4-form

RU
α := dα = ∑

0≤i< j≤3
Ri j01ei j56 +Ri j02ei j64 +Ri j03ei j45.

Then we are able to write (we omit the wedge product)

dφ = RU
α +(r− l)vol−β

2−2µα1 +(µT )β −µσ −T α2,

d∗φ =−ρ2β −ρ1vol−σβ − (µT )α1 +µ(T α1)

where T α1,T α2 act also as derivations (cf. [2]).

Theorem 2 We have always dφ 6= 0.
For the Levi-Civita connection, d∗φ = 0 if and only if M is Einstein.

For the torsion free case, ρ2 and l vanish by Bianchi identity:

dφ = RU
α−β

2−2µα1 + rvol, d∗φ =−ρ1vol.

We also find that (µT )β −µσ −T α2 = 0 ⇔ −βσ − (µT )α1 +µ(T α1) = 0

⇔ Ti j j +Tikk +Tjkl = 0, ∀{i, j,k, l}= {0,1,2,3} in direct ordering.

The study of these torsion tensors (indeed frame invariant) gives the 12-dimensional
solution space

T ∇ ∈A+⊕C−.

Recall Λ2R4⊗R4 = R4⊕A ⊕Λ3R4 is the well known decomposition of the space of
torsion-like tensors under the orthogonal group, due to Cartan. In the oriented case we
have a further decomposition of the subspace A into self-dual and anti-self-dual tensors
(thus under SO(4)). The invariant subspace C− lies as a diagonal between vectorial R4

and totally skew-symmetric torsion, also 4-dimensional. We are referring to the subspace

C± =
{

T : T (X ,Y,Z) = ν(X)〈Y,Z〉−ν(Y )〈X ,Z〉 ± 2ν
]yvolM(X ,Y,Z), ν ∈ R4∗}



The torsion forms

Recall that, by Fernandez-Gray decomposition of the subspaces ΛpR7 as G2-modules,
0≤ p≤ 7, there must exist global differential forms τi ∈ Λi such that

dφ = τ0 ∗φ +
3
4

τ1φ +∗τ3, d∗φ = τ1 ∗φ +∗τ2.

In our choice of orientation, the invariant subspace of τ2 is the space of 2-forms satis-
fying τ2φ = ∗τ2 and τ3 satisfies τ3φ = τ3 ∗ φ = 0, cf. [2, 8]. For SM with T ∇ = 0 we
deduce

τ0 =
2
7
(r+6), τ1 =−

1
3

ρ1, τ2 =
1
3

ρ
]
1y(φ −3α),

τ3 = ∗(RU
α)− 2

7
(r−1)φ +(r−2)α +

1
4
∗ (ρ1φ).

The reader finds formulas for these so called torsion forms, in the general case of a
metric connection with torsion, in reference [2].

Example: if M = H 4 is locally a real hyperbolic space with sectional curvature −2,
then SM is of pure type W3:

dφ = ∗τ3 = ∗(2µβ −6α), d∗φ = 0.

Examples with 4-dimensional rank 1 symmetric spaces M yield homogeneous gwistor
spaces, i.e. the action on M lifts to a transitive action on SM:

SS4 =V5,2, SH 4 =
SO0(4,1)

SO(3)
, SCP2 = SU(3)/U(1) = N1,1

Since any tangent space TCzCP2 = C3/Cz, the subgroup U(1) ⊂ SU(3) corresponds
with  eit

eit

e−2it

 .
Non of the natural G2-twistor structures in the cases above correspond with other known
in the literature on the same spaces. We do find an original homogeneous example with
the G2-twistor space of hyperbolic Hermitian space

H 2
C =

SU(2,1)
S(U(2)×U(1))

.

Characteristic connection

According to some approach to string theory through G2 geometry, cf. [1, 10, 11], it
is important to find the metric connections on the space which preserve the structure. In
particular the characteristic connection:

∇
c = ∇

g +
1
2

T c,



∇
cg = 0, T c(X ,Y,Z) = 〈T ∇c

(X ,Y ),Z〉 ∈ Λ
3 and ∇

c
φ = 0.

Applying the theory to find the characteristic connection of (SM,φ), we get:

• If M is Einstein, SM has a unique characteristic G2-connection.
• If M has constant sectional curvature k, then T c = (2k−2)α− kµβ .

We deduce after some computations:
Theorem 3 ([4]) The gwistor space SM has parallel characteristic torsion, ∇cT c = 0,
if and only if k = 0 or 1.
So now we study the two cases separately. If k = 1 we have locally the Stiefel manifold
V5,2 = SS4, with the gwistor structure.

Theorem 4 ([4]) (i) If k = 1, then the characteristic G2-connection ∇c = ∇g− 1
2 µβ

of V5,2 coincides with the characteristic contact connection of the Sasakian manifold
SSn = SO(n+1)/SO(n−1) =Vn+1,2 in case n = 4.

Moreover ∇c agrees with the invariant canonical connection of the homogeneous
space. Hence it is complete and with holonomy SO(n−1).
(ii) If k = 0, then the characteristic G2-connection ∇c = ∇g−α of R4×S3 is flat.
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