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Nota prévia 

 

Da elaboração da presente dissertação resultou um artigo científico que 

corresponde, naturalmente de forma mais condensada, ao conteúdo integral da 

mesma. O mesmo encontra-se submetido para publicação numa revista 

científica internacional, sob o título “Trace elements accumulation in 

anadromous sea lamprey spawners”, com autoria de S. Pedro, I. Caçador, 

B. Quintella, M.J. Lança e P.R. Almeida. Considerando que o trabalho 

apresentado foi realizado em colaboração com os autores mencionados, a 

candidata esclarece que participou activamente na obtenção, análise e 

discussão de todos os resultados e na elaboração dos manuscritos resultantes. 
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RESUMO 
 
A lampreia-marinha, Petromyzon marinus, é um ciclóstomo e migrador 

anádromo que ocorre nas principais bacias hidrográficas nacionais. Em 

Portugal, e em alguns outros países da Europa (e.g. Espanha e França), é 

considerada uma iguaria, atingindo um valor comercial bastante elevado, mas 

tendo ainda assim uma elevada procura pelos consumidores durante a época 

autorizada para a sua captura. Em Portugal esse período ocorre entre Janeiro 

e Abril, o que corresponde ao final da migração reprodutora desta espécie. 

Apesar de existir uma extensa bibliografia que aborda diferentes aspectos da 

biologia e ecologia da lampreia-marinha, a informação relativamente à 

caracterização da concentração de metais nos diferentes tecidos desta espécie 

é reduzida, e analogamente desconhece-se o seu perfil de contaminação; 

consequentemente, a segurança patente no consumo humano desta espécie 

tem sido relegada das considerações das autoridades nacionais e 

internacionais.  

Determinou-se a concentração de sete elementos em amostras de músculo e 

fígado de exemplares adultos de lampreia-marinha, nomeadamente As, Cd, 

Cu, Hg, Ni, Se e Zn, por espectrometria de emissão atómica com indução de 

plasma acoplada (ICP-AES). Os espécimes utilizados para esta determinação 

foram provenientes de oito bacias hidrográficas nacionais que correspondem à 

sua distribuição em Portugal: de norte para sul, Minho, Lima, Cávado, Douro, 

Vouga, Mondego, Tejo e Guadiana.  

Este estudo teve com objectivos principais: 1) avaliar o perfil da concentração 

de metais essenciais e não essenciais no músculo e fígado de lampreia-

marinha; 2) avaliar a segurança relacionada com o consumo humano de 

lampreia-marinha, com base na concentração de metais de músculo; 3) 

investigar possíveis diferenças na acumulação de elementos nos exemplares 

adultos que entram nas bacias hidrográficas.  

Os principais resultados deste estudo mostraram que, de uma forma 

generalizada, as fêmeas apresentam maior concentração de metais que os 

machos, tanto no músculo como no fígado, apesar de apenas para o fígado 

essas diferenças possuírem significância estatística. A concentração de metais 

no músculo foi, em geral, baixa, à excepção do Hg. Este metal apresentou 



 

viii 
 

níveis de concentração no músculo acima do limite legal estabelecido para o 

consumo humano, pelo que deve ser dada especial relevância e atenção a este 

aspecto futuramente. O perfil estabelecido através da análise conjunta dos três 

elementos não-essenciais em análise no músculo evidenciou uma segregação 

das amostras em dois grupos principais, influenciada principalmente pela 

concentração de mercúrio. A justificar esta separação estarão possivelmente 

questões relacionadas com a ecologia trófica das presas parasitadas pela 

lampreia-marinha – nível trófico e/ou contaminação distintos – ou ainda 

diferenças na duração da fase parasítica desta espécie.  
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Trace elements accumulation in the sea lamprey, 
Petromyzon marinus, L., along the major hydrographic 
basins of Portugal 
 

SUMMARY 
 
The sea-lamprey, Petromyzon marinus, is an anadromous cyclostome that 

occurs in the main river basins of Portugal, where it is considered a gastronomic 

delicacy, as it is in other European countries (e.g. Spain and France). Sea 

lampreys have a high demand in restaurants (notwithstanding the high 

commercial value) during the period of authorized capture, which coincides 

approximately to the final period of the spawning run in Portugal (January to 

April). 

Despite the extended literature addressing different aspects of the biology and 

ecology of the sea lamprey, the information regarding trace metals 

concentration in this species is sparse and reduced, and likewise, its 

contamination profile is poorly known; consequently, the safety for the human 

consumption of sea lamprey has been neglected by the national and 

international health authorities. 

Trace metals’ concentration (As, Cd, Cu, Hg, Ni, Se and Zn) was analyzed by 

ICP-AES (Induced Coupled Plasma Atomic Emission Spectrometry) in the liver 

and muscle of adult specimens of sea lamprey from eight national river basins. 

The river basins correspond to the distribution of the sea lamprey in Portugal: 

from north to south: Minho, Lima, Cávado, Douro, Vouga, Mondego, Tagus and 

Guadiana.  

This study aimed: 1) to assess the concentration profile of essential and non-

essential elements in the muscle and liver of sea lampreys that spawn on the 

Portuguese river basins; 2) to determine the safety of sea lamprey for human 

consumption regarding metal content; and 3) to investigate possible differences 

in the trace elements accumulation in adult sea lampreys entering Portuguese 

river basins.  

The main results of this study revealed that females accumulated higher levels 

of metals than males, in muscle and liver, but only differences in the liver were 

statistically significant. In a general overview, the concentration of most 

elements analyzed was low, except for Hg in the muscle. This metal exhibited 
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an average concentration in the muscle that exceeded the statutory limits for 

fish muscle, and for that reason special attention must be paid to this issue in 

the future. The concentration profile based on non-essential elements (As, Cd 

and Hg) in the muscle evidenced a segregation of the samples into two groups, 

mostly based on Hg concentration. Distinct trophic and contamination levels of 

sea lamprey’s preys, and/or different duration of the parasitic phase, may be in 

the origin of this separation. 
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ABSTRACT 

The sea lamprey, Petromyzon marinus, is an anadromous cyclostome that 

occurs in the main Western Europe river basins draining to the Atlantic Ocean, 

and considered a gastronomic delicacy in Portugal, Spain and France. The 

contamination profile of this species is fairly unknown as far as trace metals are 

concerned, with only a few studies dedicated to the subject. Trace elements 

concentration was analyzed in muscle and liver samples of adult specimens 

from eight Portuguese river basins. This study aimed: 1) to assess the profile of 

essential and non-essential elements accumulation in the muscle and liver of 

sea lampreys spawners; 2) to determine the safety of sea lamprey for human 

consumption regarding elements content; and 3) to investigate possible 

differences in the trace elements accumulation in adult sea lampreys entering 

Portuguese river basins. Females accumulated higher levels of elements than 

males, but only differences in the liver were significant. In a general overview, 

the accumulation of most elements analyzed was low, except for Hg in the 

muscle, which exceeded the statutory limits for fish concentration. The muscle 

accumulation profile based on non-essential elements (As, Cd and Hg) 

evidenced a segregation of the samples into two groups, mostly based on Hg 

concentration. Distinct trophic levels and contamination of preys and different 

time duration of the parasitic phase may be in the origin of this separation. 

 

 

Keywords 

Petromyzon marinus; metal concentration; muscle; liver; Portuguese basins; 

tolerable weekly intake 
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INTRODUCTION 

The sea lamprey 

The sea lamprey, Petromyzon marinus Linnaeus, 1758, is the sole 

representative of its genus. It is not a true fish, but a cyclostome – a jawless, 

aquatic vertebrate, belonging to Agnatha, a group that flourished during the 

Paleozoic. Sea lampreys have a slender, rounded, eel-like body, with a fibrous 

and cartilaginous skeleton, no scales, no paired appendages, two dorsal fins 

and an elongated caudal fin. One of the most distinguished characteristics of 

sea lampreys is the sucker-like oral disk and tongue with well-developed teeth 

(Fig. 1). They have seven pairs of gills, each with branquial aperture to the 

exterior, and their digestive system lacks a stomach. The name of the genus 

Petromyzon (Gr. Petros, stone, + myzon, sucking) refers to the species habit to 

grasp stones with the oral disk to maintain their position in a current (Hyckman 

et al., 1997).  

 

Figure 1 – Detail of the oral disk of Petromyzon marinus 

Petromyzon marinus occurs on both sides of the North Atlantic with 

anadromous populations, and in the Great Lakes of North America as a 

landlocked form. This landlocked form was firmly established in the Great Lakes 

by the late 1940’s, and it is considered a pest that has been affecting 

dramatically fisheries and the ecological balance of the region (Hyckman et al., 

1997). The anadromous form, on the other hand, has a varying occurrence 

throughout European waters – rare in the northern and central Europe and with 

the largest populations in rivers that flow into the Atlantic; in Portugal it occurs in 
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the main river basins. Listed as “Least Concern” by the IUCN Red List of 

Threatened Species (Freyhof & Kottelat, 2008), P. marinus populations in 

Europe have been decreasing, and in Portugal the sea lamprey is classified as 

“Vulnerable” in the national Red List of Threatened Vertebrate Species (Rogado 

et al., 2005). Gravel extraction, impassable dams and weirs (Assis, 1990, 

Almeida et al., 2000), dredging, habitat loss (Quintella et al., 2007), pollution 

(Maitland, 1980; Rogado et al., 2005), poaching and intense fisheries (Andrade 

et al., 2007) are among the main reasons for the decrease of P. marinus 

populations in Portugal. 

The life cycle of the anadromous populations of sea lamprey in the east coast of 

the Atlantic is represented in Figure 2; adults may reach 1.20 m total length and 

about 2.3 kg total weight (Hardisty, 1986).  

 

 Figure 2 – Life cycle of P. marinus. 

The microphagous filter feeding ammocoetes (larvae) live 4 to 7 years burrowed 

in freshwater sediments and then undergo a metamorphosis (macrophtalmia) 

that ends with the ongoing of the juvenile trophic migration. Adults adopt a 



 

5 
 

parasitic strategy. They attach to the preys with their sucker-like mouth and feed 

primarily on blood and flesh of the hosts, remaining in the marine environment 

for a period that may last from 13 months (F. Cobo Cardín and S. 

Silva-Bautista, pers. comm.) to about 2 years (Beamish, 1980). After that 

period, sea lampreys return to freshwater environment to spawn, entering the 

Portuguese river basins from the late fall and early winter, until late spring 

(May), with a peak between February and April (Almeida et al., 2000; 2002). It is 

during the spawning run that sea lampreys are captured by fishermen. Capture 

is allowed between January and April, and occurs mostly in the estuaries and 

lower reaches of the rivers. Nevertheless, poachers capture spawning animals 

in their nests upstream, representing an elevated number of captured lampreys 

(Andrade et al., 2007). Sea lamprey is highly appreciated in the Portuguese 

gastronomy, and the price of a single specimen may reach 30-80 euros in peak 

season (Suissas, 2010), depending on the abundance of lampreys on each 

year. 

 

Trace metals 

Factors like fish species, feeding habits, ontogenic development, or the physical 

and chemical characteristics of the surrounding environment play an important 

role in the intake and accumulation of trace elements (Dallinger et al., 1987; 

Pourang 1995; Farkas et al., 2002, 2003; Türkmen et al., 2005). 

All metals1 are toxic, but only some are essential. As a general rule of thumb, 

essential metals are those that play important roles in the biota) and non-

essential metals are those with no biological function recognized, and for that 

reason are simply and strictly toxic when present (Brown & Depledge, 1998. 

Examples of essential metals are cobalt, copper, chromium, iron, selenium, zinc 

and manganese, among others. These elements are vital components of 

enzymes, several other proteins and structural elements in organisms (Eisler, 

1987; Brown & Depledge, 1998; Eisler, 1998a). Zinc (Zn) is a component of 
                                                            
1 In order to simplify the reading of the present text, the terms “trace elements”, “trace metals” or 

“metals” may be used to refer all elements analyzed, notwithstanding the fact that As and Se 
are not metals, but a metalloid and a non-metal, respectively. 



 

6 
 

several enzymes, like carbonic anhydrase, and several hydrogenases; Zn also 

assures stability of biological molecules such as DNA and structures like 

membranes and ribosomes (Eisler, 1993; Brown & Depledge, 1998). Selenium 

(Se) constitutes an integral part of glutathione peroxidase and may have a role 

in other biological active compounds, like vitamin E (Eisler, 1985b; Brown & 

Depledge, 1998). Copper (Cu) is present in cytochrome c oxidase and the 

respiratory pigment haemocyanin and is also part of the enzymes responsible 

for the production of melanin (tyrosinase) and catecholamine (dopamine beta 

hydroxylase), among many others (Brown & Depledge, 1998; Eisler, 1998a). 

Nickel (Ni) is essential for the normal growth of several organisms, from 

microorganisms to plants and vertebrates (Eisler, 1998b). As referred initially, 

all essential metals are also toxic when the concentration needed to their 

biological role is exceeded, or when certain interactions occur. Some examples 

of essential elements toxicity in aquatic environments are  high concentrations 

of Zn that promote physical damage to the gills of fishes (Eisler, 1993); 

reproductive impairment of aquatic birds and teleosts has been reported after 

exposure to toxic concentrations of Se (Eisler, 1985b); excess Cu is known to 

cause a variety of toxic effects, including altering membrane permeability 

(Eisler, 1998a); retarded growth, central nervous system disorders, 

carcinogenic and mutagenic effects are some of the toxic effects attributed to Ni 

(Eisler, 1998b).  

Arsenic (As), cadmium (Cd) and mercury (Hg) are examples of non-essential 

metals, and their effects in the biota will go from ‘negligible’ to ‘extremely toxic’ 

depending on the concentrations (Eisler, 1985a, Eisler, 1987, Sorensen, 1991; 

EFSA, 2004, 2009, 2011). Arsenic is extremely poisonous for fishes, depending 

on the chemical form, and bizarre morphological alterations are induced by As 

in these organisms (Sorensen, 1991); among other effects, the inorganic form is 

highly carcinogenic in humans (EFSA, 2011). Cadmium, like excess Zn, can 

disrupt or terminate enzymatic activity (Eisler, 1985a; Sorensen, 1991); direct 

Cd-induced injury of gills in fishes is also reported, with the subsequent 

alteration of respiratory function (Sorensen, 1991); in humans, Cd is toxic 

primarily to the kidney, leading to renal dysfunction (Eisler, 1985a, EFSA, 

2009). Mercury is extremely poisonous and its presence in the cells of living 

organisms is undesirable and potentially hazardous; it binds strongly to 
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sulfhydryl groups, promoting strong cell division inhibitions (Sorensen, 1991). 

Organic mercury forms, like methylmercury (Me-Hg), are the ones of most 

concern (Eisler, 1987; EFSA, 2004). The widely documented disaster of 

Minamata Bay (1950’s) caused by Me-Hg poisoning is a clear statement of the 

biological implications of Hg acute and chronic exposure. Erratic behavior was 

observed in several species of mammals and large numbers of dead fish 

appeared floating on the sea surface. Humans that consumed contaminated 

fish and shellfish suffered from severe neurological damages and sensory 

impairment, among many other disturbances. The congenital cases of physical 

and mental development disturb reached abnormally high levels (Eisler, 1987; 

Sorensen, 1991).  

 

Objectives 

With respect to trace metals, the contamination of P. marinus is poorly known, 

with only a few studies addressing the subject (e.g. Drevnick et al., 2006). This 

work aimed 1) to assess the profile of essential and non-essential trace 

elements accumulation in the muscle and liver of sea lampreys that spawn on 

the Portuguese river basins; 2) to determine the safety of sea lamprey for 

human consumption regarding its trace elements content; and 3) to investigate 

possible differences in the trace elements accumulation in adult sea lampreys 

entering Portuguese river basins. 
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MATERIALS AND METHODS 

Sampling 

A total of 80 specimens from eight Portuguese river basins (Minho, Lima, 

Cávado, Douro, Vouga, Mondego, Tagus and Guadiana, 10 from each basin 

(Fig. 3), sex ratio 1:1) were collected by professional fishermen with trammel 

nets during the peak of the sea lamprey spawning seasons of 2008 and 2009, 

at the lower reaches of each river. Specimens were transported to the 

laboratory and kept alive in tanks equipped with basic life support systems (i.e. 

water aeration and filtration) until being processed. Transportation time varied 

between 3 and 5 hours, animals were processed until maximum 24 hours of 

arrival to the laboratory. 

 

Figure 3 – Geographical distribution of P. marinus in the main Portuguese rivers; bold line: 
available habitat, broken line: unavailable habitat due to impassable barriers (white 
blocks). 

 

Tissue preparation and collection 

Data on body total mass (MT, nearest g) and total length (LT, nearest mm – 

length between the beginning of the oral disk to the end of the caudal fin) was 

registered for each sea lamprey. Whole liver, gonads and trunk muscle between 

the posterior edge of the last branchial opening to the anterior edge of the 

cloacal slit in the left flank of the animal were collected; samples were washed 

N 
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with physiologic saline solution and immediately stored at -20°C until further 

processing in the laboratory, where samples (muscle and liver) were then 

freeze-dried and homogenized to a fine powder material. Gonads were only 

used to differentiate genders and to determine gonad somatic index (GSI). 

 

Muscle lipid extraction  

Muscle total lipids were extracted using a Dionex 100 accelerated solvent 

extractor (ASE). To prepare for extraction, the tissue samples were removed 

from liquid nitrogen, weighed and lyophilized until constant mass to determine 

the percentage of water loss. Aliquots of liver tissue with 1 g of dry weight were 

then pulverized in an aluminum mortar with a stainless steel pestle, both cooled 

in liquid nitrogen. The tissue powder was combined with 1 g of hydromatrix 

drying agent (Diatomaceous Earth, hydromatrix Varian, P/N 049458) and 

hydromatrix mixture were transferred to a 11-mL stainless steel extraction cell 

fitted with two cellulose filters, and additional hydromatrix was added to fill the 

cell. The total lipid sample was then extracted with a mixture of 60% chloroform 

and 40% methanol (Merck, Darmstadt, Germany) at 100°C and 13.8 MPa. Both 

extraction solvents were residue-analysis grade and were treated with 100 mg/L 

BHT (3,5-Di-tert-butyl-4-hydroxytoluene, Merck, Darmstadt, Germany) as an 

antioxidant. Two static extraction cycles were carried out during a 5 min period 

each. The crude extract was then concentrated under a stream of nitrogen and 

vacuum using a TurboVap apparatus (Zymark; Hopkinton, MA) set at a bath 

temperature of 50 °C and the dry mass of recovered material was measured to 

the nearest 0.01 mg to determine muscle total lipids (TLM). 

 

Trace elements determination  

All labware was soaked in 0.25M HNO3 for 24h and 0.25M HCl for 48h, and 

rinsed three times with deionized water to avoid contamination.  

To extract elements from the samples, ca. 0.1g of freeze-dried, homogenized 

material was acid digested with 2ml of HNO3 and HClO4 (v/v, 9:1), during 2 

hours at 110°C (Julshamn et al., 1982). Cadmium (Cd), copper (Cu), nickel (Ni), 

zinc (Zn) were determined by inductively coupled plasma atomic emission 
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spectroscopy (ICP-AES) (Horiba Jobin-Yvon, France, model Ultima equipped 

with a RF generator of 40.68 MHz and a type Czerny-Turner monochromator 

with 1.00 m (sequential); a Concomitant Metals Analyzer (CMA) was used to 

simultaneously determine arsenic (As), mercury (Hg) and selenium (Se)  in the 

samples. The accuracy and precision of the analytical methodology for 

elemental determinations were assessed by replicate analysis of certified 

reference materials (CRM), namely TORT-2 (lobster hepatopancreas). Blanks 

and the concurrent analysis of the standard reference material were used to 

normalize sample data. 

 

Statistical analysis of data 

The statistical packages Statistica v.10 (Stat Soft. Inc., 2011) and Primer v.6 & 

PERMANOVA (Clarke & Gorley, 2006) were used for data treatment and 

statistical analysis. 

MANOVA was used to see the main and interaction effects of categorical 

variables (gender and river basins) on total mass (MT,) total length (LT,) gonads 

weight (Gonads), liver weight (Liver), hepatosomatic index (HSI) and gonad 

somatic index (GSI). 

Mann-Whitney U test was used to compare trace elements accumulation in the 

muscle and the liver samples between genders, whereas Kruskal-Wallis H test, 

followed by Simultaneous Test Procedures (STP, Siegel & Castellan, 1988), was 

used to compare trace elements accumulation in the muscle and liver of 

individuals among river basins. Spearman correlation analysis was applied to 

test the relationship between elements concentrations and i) body total mass, ii) 

body total length, and iii) muscle total lipids. Previous results revealed that 

neutral lipids contents of sea lamprey muscle represents between 22-29% of 

the total muscle dry weight against 7-8% in liver. For this reason, only 

correlation between elements concentration and muscle total lipids were done 

(Lança et al., 2011). 
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A principal component analysis (PCA) and a group average cluster analysis 

performed based on Spearman rank correlation were used to investigate the 

existence of groups of samples with similar trace elements’ profile. A distance-

based permutational multivariate analysis of variance (PERMANOVA) based on 

the previously obtained Spearman rank correlation resemblance matrix was 

used to compare muscle non-essential elements accumulation profile between 

the groups that corresponded to clusters obtained by the cluster analysis. Liver 

data and essential elements were not used to avoid misinterpretations arising 

from metabolic issues. The analysis was done using 999 random permutations 

of the appropriate units (Anderson & ter Braak, 2003). The data set comprised 

74 observations x 3 variables (i.e., trace elements) and the design included one 

factor (group (two levels fixed)). SIMPER test (similar percentages) was used to 

determine which specific variables contribute to overall differences, i.e., which 

elements had more influence on dissimilarities among groups (Warwick et al., 

1990; Clarke, 1993). 
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RESULTS 

The biometric parameters total length (LT), total mass (MT), liver and gonads 

mass, muscle total lipids (TLM), hepatosomatic and gonadosomatic indexes by 

gender for the sea lampreys collected in the eight river basins are shown in 

Table 1. 

Multivariate tests for individual effects overall revealed that gender (GLM test, 

F=163.209; df=1; p=0.001) had significant effect on gonads mass (GLM test, 

F=1035.83; df=1; p=0.001), hepatosomatic index (GLM test, F=18.283; df=1; 

p=0.001) and on gonadosomatic index (GLM test, F=603.408; df=1; p=0.001), 

whereas river basin (GLM test, F=1.644; df=7; p=0.009) had significant effect on 

gonads mass (GLM test, F=4.155 df=7; p=0.001), liver mass (GLM test, 

F=2.249; df=7; p=0.043), total mass (GLM test, F=4.822; df=7; p=0.001) and 

total length (GLM test, F=3.798; df=7; p=0.002). Males presented slightly higher 

values of LT, whereas females had higher MT values (males: ்ܮതതത= 877±43 mm, 

 തതതത= 1246±205 g); nonetheless, LT்ܯ ;തതത= 868±52 mm்ܮ :തതതത= 1196± 175 g; females்ܯ

and MT were not significantly affected by gender. The smallest lampreys were 

captured in the river Douro (்ܮതതത= 851.5±34.8 mm; ்ܯതതതത= 1094±112.4 g) and river 

Guadiana (்ܮതതത= 852.1±45.8 mm; ்ܯതതതത= 1079.7±143.6 g), and the largest ones 

were captured in river Tagus (்ܮതതത= 908.6±24.3 mm; ்ܯതതതത= 1350.4±89 g) and river 

Cávado (்ܮതതത= 903.3±41.7 mm; ்ܯതതതത= 1394.1±190.9 g).  

Zn was the most abundant element in the muscle (̅3.6 ± 11.3= ݔ µg/g wet 

weight), and Cu was the most abundant element in the liver (̅56.7 ± 172.8= ݔ 

µg/g wet weight). In muscle, the average concentrations for the trace metals 

analyzed showed the following decreasing order: Zn (11.3±3.6 µg/g)> Cu 

(1.2±0.4 µg/g)> As (1.2±0.4 µg/g)> Hg (1.0±0.6 µg/g)> Se (1.0±0.3 µg/g)> Ni 

(0.06±0.1 µg/g)> Cd (4.0±0.4 ng/g) and in the liver, the ordination was Cu 

(172.8±56.7 µg/g)> Zn (25.6±11.4 µg/g)> Se (4.5±1.8 µg/g)> As (2.0±0.8 µg/g)> 

Cd (0.5±0.3 µg/g)> Hg (0.3±0.3 µg/g)> Ni (0.06±0.05 µg/g). 



 

 
 

1
3
 

Table 1 – Mean (± standard deviation) total length (LT), total mass (MT), muscle total lipids (TLM), liver mass (Liver), gonads mass (Gonads), hepatosomatic 
index (HSI) by genders and gonadosomatic index (GSI) by genders of sea lampreys collected in the eight river basins  

 

 
Minho 

(N = 10) 
Lima 

(N = 10) 
Cávado 
(N= 10) 

Douro 
(N = 10) 

Vouga 
(N = 10) 

Mondego 
(N = 10) 

Tagus 
(N = 10) 

Guadiana 
(N=10) 

LT, mm 899.7±21.4 889.2±45.3 903.3±41.7 851.5±34.8 844.3±50.3 878.4±50 908.6±24.3 852.1±45.8 

MT, g 1336±50 1255±173.4 1394.1±190.9 1094±112.4 1157.4±161 1267.5±193.8 1350.4±88.9 1079.7±143.6 

Liver, g 23.6±2.3 21±3.1 24±4 18.4±2.9 21.6±3.2 22.1±5.3 23.7±2.8 19.7±1.5 

Gonads, g - males 19.8±2.4 19.9±2.9 23.5±7.6 16.7±7.8 21.9±3.2 21.4±4 25.4±3.8 16.1.1±7.8 

Gonads, g - females 106.4±11.6 98.5±16.8 109.9±13.4 90.9±2.3 93.7±12.1 128.3±19.9 116.3±10.4 131.1±25.5 

TLM - males 327±97 519.9±152.9 490.5±34 420.1±99.48 302.6±31.7 336.7±25 264.9±13.1 400.9±26.8 

TLM - females 352.6±18 400.5±132.5 523.2±67.5 332.4±100.3 266.2±49.9 283.9±43 292.9±28.2 376±118.3 

HSI (%) - males 1.87 1.94 1.90 1.74 2.02 1.78 1.94 1.96 

HSI (%) - females 1.61 1.73 1.62 1.71 1.75 1.77 1.59 1.68 

GSI (%) - males 1.51 1.47 1.80 1.45 1.93 1.70 1.90 1,60 

GSI (%) - females 7.99 9.20 7.63 8,57 8.07 9.90 8.45 10.78 
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Comparing both tissues (Fig. 4), and for all metals but Hg and Ni, 

concentrations found in the liver were significantly higher than in the muscle 

(p<0.05) whereas the opposite situation was observed for Hg concentrations 

with significantly higher concentrations in the muscle (p<0.05). 

 

Figure 4 - Trace metals in muscle and liver of P. marinus; boxes: median and 
interquartile range; whiskers: minimum and maximum values; M: males, F: 
females; ww: wet weight; * significant differences between genders 
(p<0.05). 
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Nickel concentrations did not show significant differences between liver and 

muscle. In muscle samples, the concentration of trace elements did not differ 

between gender, as opposed to the situation observed in liver, with consistently 

higher values (p<0.05) for females (Fig. 4). 

 
Figure 5 – Trace metals in muscle and liver of male (white) and female (grey) P. marinus in the 

main Portuguese river basins (see text for acronyms); boxes: median and 
interquartile range; whiskers: minimum and maximum values; ww: wet weight; 
different letters next to the boxes: significant differences between basins for males 
(lower case letters) and females (upper case letters) (p<0.05); dashed line: statutory 
limits for Hg concentration in fish. 

 



 

16 
 

Some variation was found among individuals from river basins (Fig. 5); Minho 

(MIN) individuals presented in general the lowest median values for all the 

elements analyzed in the muscle (except for Cd), while Cávado (CAV), 

Mondego (MON), Vouga (VOU) and Lima (LIM) individuals displayed the 

highest median accumulation values (CAV: Se and Zn; MON: Hg; VOU: Cu; 

LIM: As).  

Moreover, muscle accumulation of metals among males of river basins yielded 

significant differences (p<0.05) for As, Cd, Ni and Se, whereas for liver 

significant differences (p<0.05) was also found for Cd, Ni and Se (Fig. 5). For 

females, only As in muscle revealed significant (p<0.05) differences among river 

basins.  

In muscle, As, Cu and Hg were negatively correlated with MT and LT whereas 

Zn was only negatively correlated with LT (Table 2). The correlation between 

trace elements and TLM was not significant (p>0.05). Regarding to liver, the 

only significant correlation found was between Cd and MT (R=0.271, p<0.05) 

(Table 2).  

Table 2 – Spearman rank correlations between trace elements in the muscle and liver and total 
mass (MT) and length (LT) of P. marinus and between trace elements and muscle total lipids 
(LTM) in the muscle  

Muscle MT  LT TLM  Liver MT  LT 

As -0.379** -0.262* n.s.  As n.s. n.s. 

Cd n.s. n.s. n.s.  Cd 0.271* n.s. 

Cu -0.298* -0.312** n.s.  Cu n.s. n.s. 

Hg -0.354** -0.336** n.s.  Hg n.s. n.s. 

Ni n.s. n.s. n.s.  Ni n.s. n.s. 

Se n.s. n.s. n.s.  Se n.s. n.s. 

Zn -0.249* n.s. n.s.  Zn n.s. n.s. 

n.s. – non-significant; * p<0.05, **p<0.01 

The principal components analysis based on the concentration of the 

non-essential elements under study in the muscle (As, Cd and Hg), and the 

superimposed group average cluster analysis using Spearman rank correlation 

(R= 0.81), evidenced a separation of the individuals into two groups (Fig.6). 
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Group I included 0% to 44% and Group II included 56% to 100% of the 

specimens from each river basin. 

 

Figure 6 – PCA diagram with overlaid cluster analysis (Spearman correlation, R=0.81) 
representing the contamination profile of P. marinus muscle based on As, Cd and Hg 
concentrations; PC1=77.2% variation, PC2=24.8% variation.    

The PERMANOVA results showed that the “Group” factor (group based on 

cluster analysis) exhibited significant differences (p<0.05) in the muscle 

contamination profile (Table 3).  

Table 3. Results of PERMANOVA analysis testing changes with group for muscle trace 
elements accumulation profile 

Source df SS MS Pseudo-F P (perm) Perm 
Group 1 0.49 0.49 455.04 0.001 11 

Residual 72 0.07 1.07x10-3    

Total 73 0.56     

df, degrees of freedom; SS, sum of squares; MS, mean square; Pseudo-F, pseudo-F statistic, P (perm), P-
value (permutations); Perm, number of permutations. 

 

SIMPER analysis indicated that Hg concentration was the main differentiating 

factor, due to its high contribution to the dissimilarity between Groups I and II 

(Table 4). 

Group I 

Group II 
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Table 4. – Summary of the results from the SIMPER procedure for muscle trace elements 
accumulation  

 Variables 
Contribution to 
dissimilarity (%) 

1. Dissimilarities within groups 
Group 1 
Average Squared Distance = 452.97 As 50.58 

Cd   0.05 
Hg 49.37 

Group 2 
Average Squared Distance = 355.84 As 38.24 

Cd   0.04 
Hg 61.72 

 
2. Dissimilarities among groups 
Group 1 vs. Group 2 
Average squared distance = 1454.82 As 25.45 

Cd   0.03 
Hg 74.53 
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DISCUSSION 

 

A high variability concerning As, Hg and Ni and Cd, Hg, Ni and Zn accumulation 

was found in muscle and liver, respectively. The present work’s results were 

compared to the few available data for P. marinus and it was observed that, in 

most cases, the values obtained are in the same order of magnitude. 

Nevertheless, the average of Hg concentration in the muscle was twice that of 

determined by Drevnick (pers. comm.). Results for high and variable Hg 

accumulation were also referred by Drevnick et al. (2006) in whole body of adult 

specimens of P. marinus, with a skeletal muscle coefficient of variation identical 

to the one found in this work (Drevnick, pers. comm.). The high variability in 

concentrations of Hg in adult sea lamprey is uncommon among fishes and is 

likely due to the diversity of habitats used by the species and the multitude of 

potential preys selected during their parasitic marine phase (Drevnick et al., 

2006).  

Trace metals can reach the marine environment through several routes 

depending on the form and structure in which the metal exists. When an 

element reaches the aquatic environment, the distribution within the aquatic 

environment is in accordance with its characteristics and those of the 

ecosystem (Landrum & Fisher, 1999). Metals may dissolve in the aqueous 

phase and remain as such in the water column or otherwise become adsorbed 

on some suspended solids of organic or inorganic nature (Landrum & Fisher, 

1999). 

Although the river basins could be the source of trace elements presented in the 

tissues analyzed, in our opinion, the concentration of trace elements found in 

the liver and muscle of sea lampreys should have little or no relation at all with 

the river basins where they were captured. This assumption is supported by 

some evidences: (i) these animals spent a short period of time (< 1 month) in 

the estuarine and freshwater environment during the spawning run before their 

capture (when compared to the time duration of parasitic phase in the sea – 

ca.1-2 years), during which they do not feed; and (ii) ammocoetes have a high 

bioaccumulation capacity, but considering that most of the growth of the sea 
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lamprey occurs during the marine phase, this life latter cycle stage should be 

the main contributor to the accumulation of trace elements through food, and 

river basins contamination is most likely not reflected in adult specimens. 

Sources of elements in aquatic organisms are accumulated from both 

surrounding water and from food, since whether the metal ends up dissolving in 

the water column or adsorbed on some particulate matter, it may, further, 

become ingested and assimilated by marine micro- or macro- flora or fauna, 

including various filter feeders; or it may eventually settle down into the benthic 

environment (Landrum & Fisher, 1999). The distribution and accumulation of 

the contaminant on the organism depends on the characteristics of the 

interaction between the organism and the phases into which the contaminant is 

distributed (Landrum & Fisher, 1999). Is also important to refer that direct intake 

of trace metals from the water by marine fishes, and most likely by sea 

lampreys, may be of minor importance (Brown & Depledge, 1998). Once an 

element moves from the environment into living organisms they can move 

through the food chain. Therefore, based on the aspects stated above, the 

accumulation of trace elements obtained is most likely a reflex of the feeding 

ecology of P. marinus. Considering that sea lampreys do not feed exclusively at 

a discrete trophic level (Beamish, 1980; Halliday, 1991; Drevnick, 2006), the 

feeding strategy should be not only the main source for trace elements but also 

the main reason for the variation found in the accumulation of those elements in 

the analyzed tissues of this species.  

Overall, it was observed that the females showed the highest values for the 

majority of the elements, which is a common result in literature (e.g. Al-Yousuf 

et al., 2000; Alquezar et al., 2006). Those differences, however, were only 

statistically significant for liver accumulation of trace elements. In laboratory 

experiments, females appeared to have grown to greater maximum sizes than 

males, but then increase shrinkage was shown during sexual maturation 

(Hardisty & Potter, 1971). Those results were consistent with the slight 

differences found between length and weight found in the wild specimens used 

in this study. Slower growth rates lead to a higher accumulation of metals, due 

to a lower “growth-dilution” effect (Brown & Depledge, 1998). The distinct 

composition of total lipids and proteins of the liver of migratory males and 
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females (Beamish et al., 1979), may help to explain the significant differences 

found in trace elements accumulation, since the concentration differ between 

gender, with consistently higher values for females. These differences may be 

related to several factors, such as the onset of reproduction and different 

physiological metabolism in relation to the stage in the reproductive cycle 

(Nicolletto & Hendricks, 1988; Al-Yousuf et al., 2000; Alquezar et al., 2006). In 

fact, the lower size of the females’ liver when compared with males’ livers and 

the significantly lower females HSI, could be signs indicative of lipid utilization 

and mobilization to support gonad development (Adams, 1999). The lower liver 

mass observed in female lampreys, when comparing with males in early 

spawning migration, was also observed by Beamish et al. (1979) and these 

authors suggested that the mass loss of the organ was related with the 

decreased mass of water, protein and lipid contents of liver during this stage, 

especially in females. Moreover, females showed significantly higher 

concentrations of elements than males and the concentration augmented with 

the increase in the gonadosomatic index, as observed by Zyadah (1999).  

Our results revealed that for all elements, but Hg and Ni, concentrations found 

in the liver were significantly higher than in the muscle. Generally, the metal 

accumulation is higher in the liver than in musculature in most fishes. The 

higher levels in liver reflect the high metal storage capacity of this organ when 

compared with musculature tissue and this capacity is associated with the 

production of metallothioneins which appear as a metal detoxification 

mechanism within the body (Roesijadi & Robinson, 1994; Peakall & Burger, 

2003). 

As referred initially, there are only a few published studies addressing metal 

contamination in adult sea lampreys, namely on Hg concentration on the whole 

body (Drevnick et al., 2006) and Fe in the liver (Youson et al., 1983). Araújo 

(2011) also addressed Cd, Co, Cu, Fe, Mn, Pb and Zn, but only in the muscle of 

adult migrant females. Values reported by the latter author were in agreement 

with the present results. 

Taking into account that the feeding ecology of the sea lamprey places it in the 

top of several marine food webs, results for the muscle were also compared to 
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those found in other top marine predators, such as cods, black scabbards, 

tunas, marlins and sharks. Arsenic in the yellowfin tuna, Thunnus albacares 

(Bonnaterre, 1788), and the black scabbardfish, Aphanopus carbo Lowe, 1839, 

was reported to present similar values to those of the sea lampreys (Mormede 

& Davies, 2001; Burger & Gochfeld, 2005); the Atlantic cod, Gadus morhua 

Linnaeus, 1758, and the Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 

1758), had twice the concentration of As in the muscle (Hellou et al., 1992; 

Burger & Gochfeld, 2005). Cadmium concentration in the muscle of the skipjack 

tuna Katsuwonus pelamis Linnaeus, 1758, was similar to that of P. marinus 

(Al-Busaidi et al., 2011), very variable in several species of cods (from one 

order of magnitude lower than the sea lamprey, to one order of magnitude 

above), and considerably higher in the blue marlin, Makaira nigricans 

Lacepède, 1802, Atlantic bluefin tuna and black scabbardfish (Eisler, 1985a; 

Hellou et al., 1992; Burger & Gochfeld, 2005; Afonso et al., 2007). Similar 

ranges of accumulation of Cu were described in the Atlantic cod, several shark 

species and swordfish, Xiphias glaudius Linnaeus, 1758 (Hellou et al., 1992; 

Eisler, 1998a). Concentrations of Hg in the muscle of the skipjack tuna, 

yellowfin tuna, and Atlantic cod were lower than in the sea lamprey, but as high 

as those in P. marinus, and higher, in several species of tunas from the NW-

Atlantic, in the black scabbardfish and the swordfish (Eisler, 1987; Hellou et al., 

1992; Afonso et al., 2007). Nickel accumulation in the skipjack tuna largely 

exceeded that of the sea lampreys, by one and two orders of magnitude (Eisler, 

1998b). Selenium levels in the muscle of several shark species and the 

swordfish were in the same range of those of P. marinus, but higher 

accumulation levels were found in the bluefin tuna, the black marlin, Istiompax 

indica (Cuvier, 1832) and the blue marlin (Eisler, 1985b; Hellou et al., 1992). 

Finally, Zn accumulation in the muscle of marine predators such as the bluefin 

tuna was in the same range as that of the sea lamprey (Eisler, 1993; Hellou et 

al., 1992). 

The concentrations of As, Cd and Hg in the muscle of P. marinus were 

compared with national and international standards for contaminants in food 

items (OJ-EU 2006; FAO-WHO, 2011a, 2011b), which is summarized in Table 5. 
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However, arsenic concentration in fish muscle is not regulated in the European 

territory.  

Table 5. Comparison of established levels of As, Cd and Hg as contaminants in food with 
concentration found on P. marinus muscle TWI - Tolerable Weekly Intake; PTWI - Provisional 
TWI; BMDL01 - 95% lower confidence limit of the benchmark dose of 1% extra risk; AWI - 
Acceptable Weekly Intake based on TWI, PTWI or BMDL01; -- not applicable; * 83% of total Hg; 
** 10% of total arsenic; *** CONTAM concluded in 2009 that the PTWI established for inorganic 
As was no longer acceptable; **** indicative value (report to text to further details) 

  Cd Hgtotal MeHg* Astotal Asinorg** 

EC Regulation No. 1881/2006 
(µg/g ww) 

0.05 0.5 -- -- -- 

TWI (µg/kg bw) 2.5 -- -- -- -- 

PTWI (µg/kg bw) -- 5 1.6 -- < 15*** 

BMDL01 (µg/kg bw/day) -- -- -- -- 0.3 - 8 

AWI (average adult =60 kg) 150 µg 300 µg 96 µg**** -- 180 - 480 µg

100g muscle of P. marinus 0.34±0.05 µg 103±56 µg 86±47 µg 122±45 µg 12±5 µg 

 

This metalloid occurs in different organic and inorganic forms, but the latter is of 

most concern, being associated with several types of cancer (FAO & WHO, 

2011a). Since it was not possible to determine the inorganic contribution of As 

in total As in P. marinus muscle, a 10% contribution was assumed, based on a 

worst case scenario for conversion for marine fish (FAO & WHO, 2011a). That 

being considered, 100 g of sea lamprey muscle would have 121.7 ± 45 µg of 

inorganic As. The previously established Provisional Tolerable Weekly Intake 

(PTWI) for inorganic As, of 15 µg/kg body weight (bw), would correspond to 900 

µg of inorganic As intake by an average 60 kg human; this value was 

considered by the European Food Safety Authority (EFSA) Panel on 

Contaminants in the Food Chain (CONTAM) as inappropriate, since data 

showed adverse effects at that level of intake (e.g. cancer of the lung and 

urinary bladder) (EFSA, 2009). Alternatively, the 95th percent lower confidence 

limit of the benchmark dose of 1% extra risk of having cancer due to dietary 

exposure to inorganic As (BMDL01) should be used until more information is 

acquired to establish a safer PTWI (FAO & WHO, 2011a). Considering a 

BMDL01 between 0.3 and 8 µg/kg bw/day, an average 60 kg human would be 

allowed an intake between 18 and 480 µg of inorganic As/day; 100 g of 

P. marinus muscle was estimated to have 12.2 ± 4.5 µg of inorganic As, which 
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is below the lower limit of the BMDL01. Taking these calculations into account, 

As concentration in sea lamprey muscle should pose no risk for human health 

when consumed as fillet.  

 

Considering the maximum allowed concentrations for Cd imposed by the 

Commission Regulation (EC) No 1881/2006 (OJ-EU, 2006), the 0.05 mg/kg wet 

weight (ww) limit was not exceeded by the samples analyzed in this work; the 

same conclusion applies to the Tolerable Weekly Intake (TWI) of 2.5 µg/kg bw 

(EFSA, 2011), which to an average human of 60 kg corresponds to 150 µg of 

Cd intake – in 100 g of muscle of P. marinus, the amount of Cd is 0.34 ± 0.05 

µg, which is more than 400-times lower than the TWI.  

 

Regarding Hg concentration, it is apprehensive to verify that 87.5% of the 

samples were above the maximum level of 0.50 mg/kg ww imposed by the 

Commission Regulation (OJ-EU, 2006), and over 47% exceeded twice that 

concentration. A subsample of 10 individuals analyzed for MeHg contribution to 

total Hg showed that in P. marinus this contribution was of 83 ± 13 %, which is 

in agreement with the accepted value of 80% for marine fishes (FAO & WHO, 

2011b); the average amount of MeHg in 100 g of muscle of P. marinus is of 86 

± 47 µg, in a total of 103.5 ± 56 µg of Hg. The PTWI established for MeHg 

(EFSA, 2004; FAO & WHO, 2011a;  FAO & WHO, 2011b;) is currently 1.6 µg/kg 

bw, which corresponds to 96 µg of MeHg intake for an average 60 kg human; 

the PTWI for total Hg is 5 µg/kg bw, which corresponds to 300 µg of MeHg 

intake to an average 60 kg human. Both PTWI values are above the level that is 

present in 100 g of muscle of sea lamprey, but the fact is that more than this 

amount of sea lamprey is easily consumed in one typical meal in Portugal 

during the “lamprey season” (from January to April).  

 

The trophic ecology of P. marinus and the high lipid content of its muscle tissue 

in the beginning of the spawning migration period (Lança et al., 2011) may help 

to explain the levels of Hg that were found. In fact, Lança et al. (2011) revealed 

that neutral lipid contents of sea lamprey muscle represents between 22-29% of 

the total muscle dry weight against 7-8 % in liver. Thus, sea lamprey`s muscle 

seems to represent a better fat reserve than liver in the beginning of the sea 
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lamprey spawning migration and contrasts also with the lower muscle lipid 

levels found in early upstream migrants of sea lamprey observed by Beamish et 

al., (1979). Moreover, MeHg is the predominant form of mercury in teleost 

fishes, and it is predominantly distributed by the blood to the muscles when it 

occurs in that form (contrary to Cd, that is primarily distributed to the liver and 

kidneys) (Olsson et al., 1998). It is well known that MeHg is highly lipophilic and 

contaminants that are highly lipophilic eventually end up in organism lipid stores 

(like in musculature of sea lamprey during the marine trophic phase) away from 

their receptor sites for toxic action (Landrum & Fisher, 1999). Since the sea 

lamprey is reported to attack a wide variety of fish – e.g. cod, hake, sturgeons, 

salmon, swordfish and basking sharks (Beamish, 1980) – some of which are top 

predators, feeding on blood of the hosts, and because MeHg is the predominant 

form of mercury in teleost fishes, the element contaminant load increases 

significantly with each successive trophic level, making MeHg one of the few 

trace elements that have been proved to biomagnify along the marine trophic 

levels (Suedel et al., 1994). However, MeHg hydrophobicity and the lipid 

content do not explain the behavior of MeHg in food webs.  

 

By analyzing the accumulation profile of the three non-essential elements under 

study in the muscle (i.e .As, Cd, Hg), it was possible to observe a clear 

separation within the sampled specimens. A first attempt to use liver data in this 

analysis showed a complete lack of structure within the samples and liver was 

eventually discarded from the analysis, as were the essential elements in this 

study, to avoid misinterpretation arising from metabolic aspects. The two groups 

evidenced by the multivariate analysis were primarily divided according to the 

accumulation of Hg. Group I corresponded to an average of about 26% of the 

specimens and presented the highest Hg contamination levels. This distinction 

may have two factors on its origin: (i) the groups may be dominated by 

specimens with different trophic strategies, e.g. distinct types of preys, 

eventually occupying different trophic levels, will probably affect growth rate 

(Hardisty & Potter, 1971); (ii) the time duration of the marine (parasitic) phase 

may also differ between the groups; this phase was reported to last from 23 to 

28 months (Beamish, 1980), but recent findings (Cobo-Cardín, F. & Silva, S., 

pers. comm., University of Santiago de Compostela) have evidenced that such 
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period may be as short as 13 months; a greater growth rate, as mentioned 

earlier in this discussion, could surpass the accumulation rate of Hg, therefore 

originating dilution of the accumulation by growth, which would not be as 

evident in specimens spending almost twice that amount of time at sea. 
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CONCLUSION 

Despite the widespread literature on metal accumulation in fishes, it mostly 

refers to teleosts and in some cases to sharks. Only a few works have 

addressed this problematic in cyclostomes. The present work represents an 

important addition to the knowledge of the ecology of Petromizon marinus, and 

an important gap concerning metal concentration in this species has been 

partially filled. The results have supported other ongoing projects by the same 

authors that point to the possibility that sea lampreys of the Western Iberia are 

probably using distinct oceanic regions and/or targeting different groups of 

hosts during the parasitic feeding phase of their life cycle. However, further and 

detailed investigation must be pursued regarding this topic, namely on the 

chemical forms of non-essential metals present in this species, since distinct 

chemical forms pose different levels of toxicity for human consumption. 

Although the recommended daily allowance of certain elements was not 

exceed, concerning values of Hg concentration were found, and a follow-up on 

this matter is of the most extreme importance in the human health panorama.    
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