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a b s t r a c t

The Nazaré Canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three
consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at
the Iberian Margin at two abyssal depths ( 3500 m and  4400 m). Using new and already published
data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional
diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen,
chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006
and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance
events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed
by a recovery/recolonisation period in 2007, which was strongly correlated with an increase in the
quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages,
however, also differed between stations, likely because of the contrasting hydrodynamic and food supply
conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at
the shallowest canyon station, where the quantity, quality and bioavailability of food material were
higher than at the deeper site. The present results suggest that even though inter-annual variations in the
sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity
between sampling locations in the canyon were more pronounced.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In contrast to earlier ideas of the deep sea as a remote faunal desert,
we now know that it harbours diverse assemblages of animals and
protists. Organisms inhabiting this environment are subjected to
variable regulating disturbance and seasonal/episodic productivity
regimes related to upper water-column processes (Gage and Tyler,
1991). Understanding benthic community responses to such events
allows insights into deep-sea diversity and dynamics (Gage and Tyler,
1991; Gooday, 2002; Billett et al., 2010). There is evidence that smaller

benthic organisms tend to respond quickly to pulses of organic-rich
detritus, with increases in standing stocks and enhanced metabolic
responses (Gooday, 2002; Guidi-Guilvard et al., 2009). Neverthelesswe
are still confronted with a lack of knowledge on the scales (temporal
and spatial) at which different processes regulate deep-sea commu-
nities, including conclusive insights into the cause–effect relationships
(Glover et al., 2010; Ingels and Vanreusel, 2013). In addition, for certain
relatively homogeneous deep-sea habitats it is possible to roughly
predict faunal response to, for instance, yearly peaks in organic matter
(OM) fluxes (Gooday, 2002), while for other, more complex and
dynamic habitats, patterns are more challenging to investigate. This is
particularly the case for submarine canyons,where different regulating
processes and heterogeneous environmental conditions act in concert,
in time and space, to structure faunal communities (e.g. Bianchelli et al.,
2008; Ingels and Vanreusel, 2013; McClain and Barry, 2010).

Submarine canyons are pervasive, large-scale geological fea-
tures that cut the continental shelf and slope, and form a direct
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pathway from shallow waters to the deep sea. Characterised by
complex topography, hydrology, disturbance regimes (e.g. strong
near-bottom currents, turbidity flows) and locally enhanced
organic matter availability, canyons act as important sediment
and organic material conduits to the abyssal plain (Canals et al.,
2006; de Stigter et al., 2007; Masson et al., 2010). In general,
higher faunal densities, biomass, local diversity and trophic com-
plexity are found in canyons compared to the adjacent slope (e.g.
Soetaert and Heip, 1995; Soltwedel, 2000; Danovaro et al., 2009;
Ingels et al., 2009, 2011c; De Leo et al., 2010; McClain and Barry,
2010), although occasionally very low densities are also found
(Van Gaever et al., 2009; Garcia et al., 2007).

The number of studies on meiofauna in submarine canyons has
increased in recent years, providing a better insight into how benthic
communities respond to environmental conditions within canyons
(e.g. Soetaert et al., 1991; Soltwedel, 2000; Soltwedel et al., 2005;
Koho et al., 2007; Bianchelli et al., 2008, 2010, Ingels et al., 2009,
2011a, 2011b, 2011c; Danovaro et al., 2010; Pusceddu et al., 2013).
Nematodes, as the most abundant meiobenthic taxon, are considered
a useful tool to obtain information on ecosystem characteristics and
functioning (Heip et al., 1985; Vincx et al., 1994). Due to their
ecological and biological characteristics (high abundance, sensitive
to different types of disturbance, short generation time, limited
mobility and lack of pelagic life stages), it is expected that the
structural and functional diversity of nematode communities reflect
variability in habitats, physical disturbance and food availability
throughout canyon systems over time (Giere, 2009; Vanreusel et al.,
2010). Still, many of the canyon studies only address spatial patterns
(e.g. Danovaro et al., 1999, 2009; Garcia et al., 2007; Ingels et al., 2009,
2011b, 2011c; Bianchelli et al., 2010; Ingels and Vanreusel, 2013).

The relative inaccessibility and the logistical challenges of main-
taining a long-term monitoring programme are among the main
factors restricting temporal studies in canyons. Information on
temporal variability of meiofauna within canyons is therefore sparse
and generally limited to seasonal studies (Danovaro et al., 1999;
Gooday, 2002; Fontanier et al., 2005). The few studies that use
nematodes to investigate intra- and inter-annual variability, focus
solely on abundances (de Bovée et al., 1990; Soetaert et al., 1991;

Guidi-Guilvard et al., 2005) and to our knowledge only one study has

investigated patterns based on nematode diversity as well as biomass

(Pusceddu et al., 2013) from canyons in the Mediterranean Sea. All

studies indicate high variability over time, probably related with

fluctuations of the food supply in the context of bentho-pelagic

coupling. Additionally, alterations to the sedimentary environment

caused by physical disturbance (e.g. turbidity currents, benthic

storms, etc.) may be responsible for some of the faunal temporal

changes observed (Guidi-Guilvard et al., 2009; Pusceddu et al., 2013).

Meiofaunal abundances can decrease markedly after physical dis-

turbance events and are usually followed by a short recovery time

(Ingels et al., in press; Romano et al., in press; Pusceddu et al., 2013).

The causes for the evident standing stocks decrease could be the result

of one or a set of factors such as an increase in mortality, resuspension

and transport of the individuals entrained with sediments, and

migration to deep sediment layers (Guidi-Guilvard et al., 2009).

Nevertheless, limited information is available on how meiobenthic,

and in particular nematode community composition, and structural

and functional diversity are altered by temporal changes in canyons.

As part of the HERMES project (Hotspot Ecosystem Research on

the Margins of European Seas), the NE Atlantic margin's largest

canyon, the Nazaré Canyon, was sampled in three consecutive

years (2005–2007), permitting us to perform the first inter-annual

meiobenthic study in canyons along the Iberian coast. Using

already published (Ingels et al., 2009, 2011b; Kiriakoulakis et al.,

2011) and new data, the main aim of this study was to investigate

inter-annual patterns of the meiofaunal communities, with

emphasis on free-living marine nematodes at two distinct abyssal

canyon locations (representing two different water depths; ca.

3500 m and ca. 4400 m). We hypothesised that potential changes

in environmental conditions between the two canyon sites and

over the years would be reflected in the meiofauna/nematodes

standing stocks and structural and functional diversity. The fol-

lowing null hypotheses were tested for meiofauna and nematode

abundance, community composition, biomass, diversity, and

trophic composition: (1) there are no significant differences

between the different years, 2005, 2006, and 2007; (2) there are

no significant differences between the canyon sites (ca. 3500 and

ca. 4400 m); (3) there is no relation between environmental

conditions and meiofauna and nematode community parameters.

2. Material and methods

2.1. Study area

The Western Iberian Margin in the Northeast Atlantic is

characterised by a narrow shelf adjacent to a steep irregular slope

and is incised by numerous canyons. The largest canyon along the

Western Iberian Margin is the Nazaré Canyon (Fig. 1), originating

on the shelf at a water depth of 50 m near the Portuguese coast

and extending to 5000 m water depth at the edge of the Iberian

Abyssal Plain (Masson et al., 2011). There is no connection to a

large river system, but the canyon intersects a significant part of

the shelf, and traps large quantities of sediments with high OM

content that are moving along the coast (de Stigter et al., 2007;

Oliveira et al., 2007; Arzola et al., 2008; Lastras et al., 2009;

Masson et al., 2011). The canyon is usually divided into three parts

on the basis of its morphology (de Stigter et al., 2007; Lastras et al.,

2009). The upper and mid-canyon sections are characterised by

the presence of moderately strong tidal currents (maximum of

35 cm/s), causing resuspension, transport and redistribution of

particulate matter (de Stigter et al., 2007; Masson et al., 2011). The

transport towards the lower part of the canyon takes place

predominantly in nepheloid layers or less frequently through the

flushing of sediments by gravity flows, providing irregular OM

input to the deeper section (Van Weering et al., 2002; de Stigter

et al., 2007; Lastras et al., 2009). The mid-canyon site was located

in the central part of the canyon on a terraced slope next to the

axial channel (thalweg), with high sediment accumulation rates

(Arzola et al., 2008; Lastras et al., 2009). The deep-canyon site was

located in the flat-floored lower canyon valley.

2.2. Sampling

The sampling was conducted during the late spring/early

summer of 2005, 2006 and 2007, at ca. 3500 m and ca. 4400 m,

corresponding to the mid and deeper sections of the canyon,

respectively (Fig. 1; Weaver, 2005; Billett, 2006; Masson, 2009).

At each sampling site and in each year, 6 sediment cores were

recovered (3 for meiofauna analysis and 3 for environmental

analyses). The sediment samples from 2005 and 2006 were

obtained using a multicorer (MUC, Plexiglas tubes with 57 mm

internal diameter) and a megacorer (MGC, Ocean Scientific Inter-

national Ltd, Plexiglas tubes with 100 mm internal diameter), the

latter subsampled with a core of 60 mm internal diameter, in order

to maintain relative consistency in sample surface area for all

replicates. The 2007 samples were taken using push cores (with

internal diameter of 57 mm) by the Remotely Operated Vehicle

(ROV) ISIS. At each sampling event the top 1 cm of 3 replicate cores

(each core from independent deployments) were placed in Petri

dishes and frozen at  20 1C, for later determination of environ-

mental characteristics in the lab. The other 3 replicate cores from

independent deployments, with exception of the deep site in 2006
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when only 2 replicates were recovered, were fixed in borax-

buffered 4% formalin for further meiofauna analysis.

2.3. Environmental data

In the laboratory, sediments were analysed for grain size, geo-

chemistry and pigment content. In 2007 for the deep station, it was

not possible to analyse granulometry and pigment content in the

sediment, and for some replicates in 2006 not all variables could be

measured. The grain-size distribution of the 4–800 μm sediment

fractionwas measured using a Coulter Counter LS 100TM Particle Size

Analyzer and classified according to Wenthworth (1922). Total

organic carbon (TOC) and total nitrogen (TN) content was measured

using a CEInstruments NC 2500 CHN analyser in duplicate (mean

value quoted here; all values were within 10% of the mean). Samples

for TOC analyses were acidified according to the acid vapour method

of Yamamuro and Kayanne (1995). TN was determined without

acidification. To estimate the amount of OM in the sediment that is

derived from primary production, the sediment samples were

lyophilised and homogenised prior to extracting the pigments in

90% acetone. Pigments were then separated using reverse phase

HPLC, and quantified using a fluorescence detector according to

Wright and Jeffrey (1997). Chloroplastic Pigment Equivalents (CPE)

values were obtained from the sum of chlorophyll a (chl a) and its

degradation products, phaeopigments (phaeo). To estimate the fresh-

ness of OM of photosynthetic origin, the ratio chl a:phaeo was

determined (García and Thomsen, 2008). Additionally, the ratio chl

a:TOC was used as a measurement to the bioavailability of organic

carbon from photosynthetic origin. The environmental data has been

published in Ingels et al. (2009, 2011b) and Kiriakoulakis et al. (2011).

2.4. Meiofauna and nematodes

Meiofauna was extracted from the sediment using a density

gradient solution in a centrifugation procedure (Heip et al., 1985).

The fixed samples were rinsed on a 1000-μm mesh sieve followed

by sieving on a 32-μm mesh. The retained 32–1000 mm fraction

was washed and centrifuged three times using the colloidal silica

polymer LUDOX TM 40 (specific gravity 1.19). The supernatant of

each washing cycle was again collected on a 32-mm sieve. After

extraction, the samples were kept in buffered 4% formalin and

stained with Rose Bengal. All metazoan meiobenthic organisms

were counted and classified at higher taxon level following Higgins

and Thiel (1988; all at phylum level apart from nauplius larvae,

which are ecologically distinct from their adult counterparts, the

copepods) under a Leica S6E stereomicroscope (50 magnifica-

tion). For nematode identification, 100–120 nematodes (or all

nematodes when densities were lower than 120 per sample) were

picked out randomly and mounted on permanent glycerin slides

after stepwise dehydration in a graded series of ethanol: glycerin

mixtures (Seinhorst, 1959). Afterwards, the nematodes were iden-

tified down to genus level using pictorial keys (Platt and Warwick,

1988) and the online identification keys/literature available on

Nemys Database (Deprez et al., 2005, www.nemys.ugent.be). When

a specimen could not be assigned to a genus, it was identified at the

family level. All identified individuals were also grouped into four

feeding-type groups (selective deposit feeders (1A), non-selective

deposit feeders (1B), epigrowth feeders (2A), and predators/scaven-

gers (2B)) according to the Wieser classification (1953). Nematode

length (excluding filiform tail tips; L) and maximum body width

(W) were measured under a Olympus BX-50 compound microscope

(1000 magnification) with Olympus Cell^D software. Biomass of

all specimens was calculated by applying Andrassy's formula for

calculating the wet weight (Andrassy, 1956). A ratio of 0.25 was

assumed to convert nematode wet weight in dry weight (dwt; Heip

et al., 1985). Part of the meiofauna and nematode data has been

published previously in Ingels et al. (2009) and Ingels et al. (2011b).

2.5. Data analyses

In order to test for significant differences in all investigated

environmental and biological data between years and stations, a

two-way crossed design (factors: year (fixed) and depth (fixed))

Fig. 1. Left: Overview of the Western Iberian Margin showing the location of the Nazaré Canyon. Right: Detailed map presenting the local geomorphological setting of the

Nazaré Canyon sample stations: Mid (ca. 3500 m) and Deep (ca. 4400 m). Bathymetry data compiled from a General Bathymetric Chart of the Oceans (GEBCO) Digital Atlas

(IOC et al., 2003) and Mirone software (Luis, 2007, http://w3.ualg.pt/! jluis/mirone/).
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was used to perform either uni- or multivariate analysis of

variance by permutation (PERMANOVA Anderson, 2005;

Anderson et al., 2008). All analyses, apart from correlations, were

performed using PRIMER v6 (Clarke and Gorley, 2006) and

PERMANOVAþ (Anderson et al., 2008). To investigate significant

differences in all environmental variables over time and depth/

stations, uni- and multi-variate PERMANOVA analyses were

applied (all environmental variables were analysed univariately,

apart from grain-size data, which was analysed multivariately by

considering clay, silt and sand as multivariate variables). Addition-

ally, a principal component analysis (PCA) was performed to

identify temporal and spatial patterns based on physicochemical

data. Prior to the calculation of the Euclidean distance resem-

blance matrix, the data were checked for uniform distribution (the

C:N ratio values were log[0.01þX] transformed) followed by

normalisation (subtracting the mean and dividing by the standard

deviation, for each variable) before analysis.

Two-way PERMANOVA analyses were performed to test if the

meiofauna and nematode abundance, community composition, and

biomass, differed significantly over time and between water depths/

habitats. The data were a priori standardized, square-root trans-

formed (fourth-root transformed in the case of biomass) and the

Bray–Curtis similarity was used for calculating the resemblance

matrix. Whenever significant differences were detected, pairwise

comparisons were performed. When PERMANOVA permutations

numbers were limited (o100), Monte-Carlo values were used to

infer significance. Afterwards, to determine the relative contribu-

tion of each genus to the (dis)similarities between years and

stations, a two-way crossed similarity percentage analysis proce-

dure (SIMPER; cut-off percentage: 90%) was performed. To deter-

mine temporal and spatial patterns between samples based on

nematode community structure, a principal coordinate analysis

(PCO) plot was drawn. The nematode structural diversity at genus

level was calculated using Hill indices (1973) (H0, H1, H2 and H1),

Pielou evenness measure (J) and estimated number of genera (EG

(51)). To understand the functional diversity the trophic diversity

index was calculated (ITD; Heip et al., 1998) based on the feeding-

types from Wieser (1953). The reciprocal value of the trophic index

(Θ"1) was used, so that the higher values of the index correspond

to higher trophic diversity. As in the case of nematode abundance

and biomass, differences in selected structural diversity measures

(H0, H1) and a functional diversity measure (trophic index; Θ"1)

were tested by means of univariate PERMANOVA (standardized,

fourth-root transformed and Bray–Curtis similarity used for resem-

blance), to test for significant differences between factors.

To assess if and to what extent the physicochemical variables

explained changes in nematode community composition, a

DISTLM (distance-based linear model) routine was applied.

DISTLM allows for the building of a parsimonious model of

variables that explain the nematode genera community patterns

and testing the interrelationships by means of permutation. The

DISTLM procedure was conducted using adjusted R² as selection

criterion and a stepwise selection procedure, whereby in each step

the routine adds a variable to the model (starting from 0) that

improves the selection criterion based on a conditional test,

followed by the removal of a variable if the criterion can be

increased (Anderson et al., 2008). The dbRDA (distance-based

redundancy analysis) plot was computed to illustrate the DISTLM

model. To complement these analyses, correlations were calcu-

lated between environmental variables and meiofauna/nematode

abundance and biomass, and diversity of the nematodes (non-

parametric Kendall-tau statistics using Statistica v7).

3. Results

3.1. Characterisation of the environment

The results of the PERMANOVA analyses revealed significant

differences between years for sediment grain size and all variables

derived from photosynthetic pigment values (Table 1 and Table

S1). Significant depth differences were only found for the variables

TN, CPE and phaeo.

A high content of clay and silt (79–91%) and low sand content

(9–21%) were found in 2005 and 2007, whilst a remarkable

increase of sand content (56–75%) was observed in 2006. The

total phytopigment concentrations (CPE, chl a), freshness (chl a:

phaeo ratio) and bioavailability (chl a:TOC ratio) of the phytode-

trital OM were particularly high in 2007 at the mid-canyon station

(Table 1). No significant differences were found between years for

TOC and TN values (Table S1), but the highest values were

consistently found at the mid-canyon station (1.70–2.05 for TOC

%, 0.20–0.22 for TN%), with lower values at the deeper station

(1.41–1.68 for TOC%, 0.15–0.16 for TN%; Table 1). Only TN values

were significantly different between stations (po0.05, Table S1).

Relatively high C:N ratios were observed in all samples (9.2–12.7)

compared to literature values for fresh marine OM, particularly at

the deeper station (Table 1), but no statistically significant differ-

ences were found between years or stations.

The results of the PCA ordination showed a distinct separation of

the different sampling years (Fig. 2), in accordance with the PERMA-

NOVA analyses and the physicochemical values (Fig. 2, Table S1). No

consistent differences were observed between stations. The first two

PC axes explained 71% of the variation (46.3 and 24.6 for PC1 and PC2,

Table 1

Mean7standard deviation values of environmental variables for each year at each station. Mid: ca. 3500 m, Deep: ca. 4400 m; Sediment fraction according to Wenthworth

(1922): clay (%), silt (%), sand (%); total organic carbon (TOC), total nitrogen (TN), molar carbon:nitrogen ratio (C:N); chloroplastic pigments equivalents (CPE), chlorophyll a
(chl a), chlorophyll a:phaeopigment ratio (chl a:phaeo) and chlorophyll a:total organic carbon (chl a:TOC).

Year: 2005 2006 2007

Station: Mid Deep Mid Deep Mid Deep

Clay (%) 12.1770.46 10.6370.66 16.4273.24 12.5874.88 13.9670.82 –

Silt (%) 78.6271.08 68.4272.23 8.6670.91 31.51718.65 76.4470.91 –

Sand (%) 9.2270.78 20.9572.78 74.9272.46 55.91713.79 9.6170.41 –

TOC (%) 1.7070.53 1.6870.13 1.7770.16 1.4170.16 2.0570.15 1.6370.00

TN (%) 0.2270.02 0.1570.01 0.2070.02 0.1570.01 0.2270.03 0.1670.00

C:N 9.273.5 12.770.4 10.270.2 10.870.9 10.871.1 11.770.0

CPE (mg/g) 1.6770.09 1.1470.19 0.4470.18 0.2070.13 1.6170.13 –

chl a (mg/g) 0.1270.01 0.1170.04 0.1070.02 0.0570.00 0.2670.03 –

phaeo (mg/g) 0.8970.08 0.5970.07 0.3470.14 0.1270.10 0.7870.05 –

chl a:phaeo 0.0870.01 0.1070.02 0.3270.11 0.2170.00 0.3370.02 –

chl a:TOC 0.0870.04 0.0670.03 0.0570.02 0.0170.02 0.1370.03 –
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respectively). The main contributors were CPE ( 0.437), sand %

(0.414) and silt % ( 0.409) for axis PC1 and chl a:phaeo (0.559)

and clay % ( 0.505) for axis PC2 (numbers in parentheses represent

eigenvector values).

3.2. Metazoan meiofauna

In total, 19 meiofauna higher taxa were identified; nematodes

were always the dominant group (83.4–91.1%) (Table 2, Fig. 3),

followed by nauplius larvae (3.3–9.6%) and harpacticoid copepods

(3.3–7.8%). The remaining taxa comprised less than 1% of total

abundance. The results of the two-factor PERMANOVA for meio-

fauna abundance exhibited significant differences between years,

stations and the interaction of both factors (po0.01, Table 3).

Differences between stations were more important than the years

and interaction differences judging by the higher estimated

component of variation of the former. The highest total abun-

dances were recorded in 2005 (509.57107.5 ind. 10 cm 2), whilst

abundances in 2006 and 2007 were ca. 30–40% lower and variable

depending on the station (299.0741.4 ind. 10 cm 2 and

363.47316.6 ind. 10 cm 2, for the 3400 m and 4400 m sites,

respectively; Table 3, Fig. 3). Meiofauna community structure

was significantly different only when the two stations were

compared (po0.05, Table 3).

3.3. Nematodes

3.3.1. Nematode assemblages
The results of the two-factor PERMANOVA analysis indicated

significant differences in nematode communities between years

(po0.01), stations (po0.01), and the interaction of both factors

(po0.05, Table 3). However, station differences were clearly more

important than yearly differences or the interaction for community

variability as indicated by the high estimated component of varia-

tion (ECV). Overall, the community-based PCO ordination plot

(Fig. 4) shows a complete separation of the mid- and deep-stations,

but also clear differences between 2005 and samples taken in 2006

and 2007. Subsequent pairwise tests confirmed this, with 2005

assemblages highly distinct from 2006 and 2007 (po0.01, Table

S2). No significant differences were observed between the samples

from 2006 and 2007. Additionally, while nematode communities

from different stations showed significant differences for 2005 and

2007 (po0.05), in 2006, differences between the two stations were

not significant (p¼0.068 level, Table S2).

The most common genera found in all canyon stations were

Halalaimus (12.875.9%), Dichromadora (8.877.3%), Acantholaimus
(8.3711.8%), Desmoscolex (6.977.8%), and Daptonema (5.472.3%;

Table 4). The SIMPER analysis showed a maximum dissimilarity

between mid-station and deep-station assemblages (60%), mainly

through the presence of Desmoscolex (6.5%) and Acantholaimus
(5.6%), which are typically found at the deep station. The highest

between-year dissimilarities in the assemblages were found

Fig. 2. Principal component analysis (PCA) ordination based on environmental data

per year at the two studied stations (Mid: ca. 3500 m and Deep: ca. 4400 m). Data

untransformed (except log (0.01þX) transformation for C:N ratio) and normalised.

Euclidean distance used as measurement for resemblance. Parameters included in

the analysis are: Sediment fraction according to Wenthworth (1922): clay (%),

silt (%), sand (%); total organic carbon (TOC), total nitrogen (TN), molar carbon:

nitrogen ratio (C:N); chloroplastic pigments equivalents (CPE), chlorophyll a (chl a),

chlorophyll a:phaeopigment ratio (chl a:phaeo) and chlorophyll a:total organic

carbon (chl a:TOC).

Table 2

Mean7standard deviation of meiofauna higher taxa abundance (ind. 10 cm 2) for each year (2005, 2006 and 2007) and station (Mid: ca. 3500 m, Deep: ca. 4400 m).

Year: 2005 2006 2007

Station: Mid Deep Mid Deep Mid Deep

Bivalvia – 0.470.0 0.870.2 0.270.2 0.470.3 –

Gastropoda 0.370.4 – – – – –

Gastrotricha 0.170.2 0.170.2 0.470.3 – 0.970.5 0.370.2

Gnathostomulidae 0.170.2 0.170.2 – – – –

Halacarida – 0.170.2 0.170.2 – – –

Harpacticoidea 28.6715.6 20.473.2 26.572.4 5.872.7 29.772.7 3.771.6

Holothuroidea – – – – 0.170.2 –

Isopoda 0.170.2 0.170.2 – – 0.170.2 –

Kinorrhyncha 12.074.3 0.370.2 6.774.9 0.470.4 7.871.4 0.470.4

Nauplii 26.5716.4 28.574.6 17.173.9 6.071.4 60.9714.0 5.071.8

Nematoda 515.1760.2 372.2760.0 314.77106.3 175.3733.6 535.67102.2 74.7735.2

Oligochaeta 0.170.2 0.170.2 0.170.2 0.270.2 0.170.2 –

Ostracoda 0.470.3 0.470.6 0.670.4 0.270.2 – –

Polychaeta 2.271.0 1.270.6 2.571.5 1.470.7 3.570.6 0.570.4

Priapulida 0.370.4 0.170.2 0.170.2 – 0.370.4 –

Rotifera 3.570.5 3.870.8 0.670.4 0.970.9 – –

Tanaidiacea 0.170.2 0.370.4 0.170.2 0.270.2 0.570.5 0.170.2

Tardigrada – – 0.170.2 – – –

Turbellaria 0.970.7 0.470.3 0.470.3 0.570.2 – 0.370.4

Total (ind. 10 cm 2) 590.4743.1 428.5765.5 371.07114.8 191.0727.7 640.07108.9 84.9736.2
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between 2005 and 2007 (51.6%) followed by the comparison

between 2005 and 2006 (50.8%), with Acantholaimus (3.4–4.1%),

Thalassomonhystera (4.1%), Metadesmolaimus (5.3%), and Molgolai-
mus (3.0–3.7%) as the main contributors (Table 5).

3.3.2. Structural and functional diversity
Ninety-four nematode genera were identified among the 2088

individuals investigated (Table 6). Genus richness (H0) and struc-

tural diversity based on H1 differed significantly between years

(po0.05; Table 3). Diversity at the deep station was greater in

2006 and 2007 compared to the mid-station; the inverse was true

for 2005. Highest diversity values were observed at the deep

station in 2006. The variable differences between stations for each

year may explain the significant interaction in the PERMANOVA

test (po0.05, based on H0 and H1; Table 3). The trophic diversity

(Θ 1) changed significantly over time (po0.05, Table 3), but not

between stations. The lower trophic diversity was found in 2006

(3.0170.30) followed by 2005 (3.2270.22) and the highest

values were observed in 2007 (3.5070.17; Fig. 5). At the mid-

station, the non-selective deposit feeders (1B) dominated the

assemblages in all years, while at the deep site epistrate feeders

dominated the assemblages in 2005, but were overtaken by the

deposit feeders (1A, 1B) in 2006 and 2007. The predator/scavenger

group (2B) was the least abundant feeding type in assemblages at

both sites and in all sampling years (Fig. 5).

3.3.3. Biomass
The results of the univariate PERMANOVA analysis of biomass data

indicated highly significant differences between years and stations

(pr0.01, Table 3; Fig. 6). The interaction of factors was not significant.

Highest total nematode biomass (dwt) was observed in 2005

(67.9741.8 mg dwt 10 cm 2), followed by 2006 and 2007 with

33.0722.3 mg dwt 10 cm 2 and 23.5717.3 mg dwt 10 cm 2, respec-

tively. The general trend was that total biomass declined over the years

at both stations. Additionally, the biomass was much higher at the

mid-canyon station (35.4–85.2 mg dwt 10 cm 2) than at the deeper

station (11.6–38.6 mg dwt 10 cm 2). The estimated components of

variation resulting from the PERMANOVA test indicate that greater

biomass differences exist between stations than between years. The

non-selective deposit feeders (1B) contributed the most to total

biomass at the mid-station, whilst predators/scavengers dominated

the biomass at the deep site.

3.4. Relation between nematode communities and environmental
variables

The marginal (individual variables) tests on the DISTLM analy-

sis indicated that chl a:phaeo, Clay% and TN% explain a significant

amount of the variation in nematode genera composition

(po0.05; 21.2%, 18.7%, 22.7% of variation explained, respectively).

The sequential tests using the stepwise selection procedure

indicated that the combination of TN%, chl a:phaeo, Silt%, CPE

(mg/g), phaeo total (mg/g), and chl a:TOC constituted the best

explanatory model for the nematode community patterns (ca.

73% of total variability explained). These results imply that the

bioavailability of the OM in the sediments explain a large part of

the variability observed in the nematode community. No separa-

tion was observed in the dbRDA plot between the years 2006 and

2007, but the 2005 samples were separated from the 2006–2007

group (Fig. 7). The environmental vectors on the plot give an

indication of the importance of the environmental variable differ-

ences between different samples. The first two dbRDA axes

explained 56.7% of the variation contained in the nematode genera

composition.

The Kendall-Tau correlations are shown in Table 7. Both

meiofaunal and nematode abundances were positively correlated

with quantity and bioavailability of the OM (CPE, chl a, and chl a:

TOC), whilst TN(%) was positively correlated with meiofauna

abundance only (p¼0.019). None of the environmental factors

showed a correlation with nematode biomass nor with any

diversity measurements (data not shown), except for the trophic

Fig. 3. Mean7standard deviation of the meiofauna and nematode abundances, total organic carbon (TOC), chlorophyll a (chl a), freshness (chl a:phaeo) and bioavailability

(chl a:phaeo) in the sediment for all studied years at both stations (Mid: ca. 3500 m and Deep: ca. 4400 m).
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diversity, which was positively correlated (p¼0.039) with the

bioavailability of the sedimentary carbon pool (chl a:TOC).

4. Discussion

4.1. Sedimentary environment

Nazaré Canyon sediments at the studied sites are usually

dominated by high fractions of clay and silt (Garcia et al., 2007;

Ingels et al., 2009; Kiriakoulakis et al., 2011). Nevertheless, a

striking rise in sand content in 2006 at both stations was observed

compared to the previous and following year (2005 and 2007). The

increase was not restricted to the surface layer but was established

over at least 5 cm depth (unpublished data). This suggests the

occurrence of one or more deposition events, such as slumps or

very rapid settlement of course sediment displacements, prior to

the 2006 sampling event. Alternatively, the erosion of fine sedi-

ments may have occurred, which would have removed the top

layer of the sediment and exposed the coarser sediment layers

underneath. However, sediment cores recovered by Arzola et al.

(2008) from the same locations as the present study show the

prevalence of turbiditic mud in the top metre of the sediment.

Another argument for proposing that the occurrence of one or

more deposition events is likely to explain our observations is that

mass deposition events, likely associated with sediment gravity

flows, are not rare in the areas we investigated (de Stigter et al.,

2007). The sedimentary environment in canyons is subjected to

heterogeneous processes, characterised by cycles of suspension,

transport and deposition that may be the result of one or a set of

Table 3

Results of the two-way PERMANOVA test (factor “Year” with 3 levels, and factor “Station” with 2 levels, both fixed) for all biological variables analysed: meiofauna abundance

and composition, nematode community structure, structural (H0 and H1) and functional diversity (θ!1) and biomass (mg 10 cm!2: dwt) between years (2005, 2006 and

2007), water depths stations (Mid: ca. 3400 m and Deep: ca. 4400 m) and interaction of factors. A—meiofauna composition; B—nematodes descriptors. *Significance at the

po0.05 level and **po0.01. Data were standardised and square root transformed; resemblance was calculated using Bray–Curtis similarity.

Factors df SS MS Pseudo-F P (perm) Perms Estim. of comp.

of variation

A. Meiofauna
Abundance

Year 2 2220.8 2220.8 31.946 0.0003nn 9941 258.96

Station 1 1353.5 676.73 9.7345 0.0009nn 9942 108.99

Year" Station 2 1349.9 674.97 9.7091 0.0018nn 9956 217.34

Residual 11 764.7 69.519 69.519

Total 16 5766.8

Community

Year 2 211.32 211.32 2.071 0.0788 9953 13.154

Station 1 421.29 210.65 2.0643 0.0378n 9931 19.493

Year" Station 2 176.32 88.161 0.86398 0.5356 9949 4.9824

Residual 11 1122.5 102.04 102.04

Total 16 1928.1

B. Nematode
Community

Year 2 4932.6 2466.3 3.1135 0.0004nn 9917 300.49

Station 1 8061.6 8061.6 10.177 0.0001nn 9938 875.03

Year" Station 2 2601.6 1300.8 1.6422 0.0247n 9911 182.6

Residual 11 8713.4 792.12 792.12

Total 16 24,791

Genera richness

(H0)

Year 2 34.945 17.473 4.9375 0.0322n 9946 2.5009

Station 1 5.2685 5.2685 1.4888 0.2362 9881 0.2082

Year" Station 2 38.103 19.052 5.3837 0.0255n 9958 5.5687

Residual 11 38.926 3.5388 3.5388

Total 16 111.56

Structural diversity

(H1)

Year 2 34.955 17.473 4.9375 0.0304n 9958 2.5009

Station 1 5.268 5.2685 1.4888 0.2457 9904 0.2082

Year" Station 2 38.103 19.052 5.3837 0.0281n 9953 5.5687

Residual 11 38.926 3.5388 3.5388

Total 16 111.56

Trophic diversity

(θ–1)

Year 2 10.007 5.0036 5.8784 0.0198n 9946 0.7453

Station 1 0.2934 0.2934 0.3447 0.5792 9885 0.0672

Year" Station 2 1.4047 0.7023 0.8251 0.4638 9953 0.0534

Residual 11 9.363 0.8511 0.8511

Total 16 21.263

Biomass

Year 2 3950.1 1975.1 2.2434 0.0016nn 9880 196.48

Station 1 5995.3 5995.3 6.8099 0.0002nn 9929 615.69

Year" Station 2 2239.6 1119.8 1.2719 0.164 9900 85.94

Residual 11 9684.3 880.39 880.39

Total 16 22,119
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the physical disturbance processes occurring with a distinct

frequency and intensity over time (e.g. tidal currents, turbidity

currents, occasional sediment gravity flows; Arzola et al., 2008; de

Stigter et al., 2007; Lastras et al., 2009).

The observed changes in granulometry during the study period

were possibly associated with changes in food supply and OM

bioavailability. The significant drop of phytopigment concentra-

tions (CPE, chl a) and phytodetrital OM bioavailability (chl a:TOC

ratio) in 2006 compared to the years before and after is most likely

linked to a dilution or covering effect caused by deposited layers of

sediment with low OM phytodetritus concentrations, since the

changes are consistent over a vertical profile of at least 5 cm depth

(unpublished data). Still, there remains the possibility that erosion

of the top sediment layers and re-deposition has occurred,

particularly at the shallower station where strong tidal and

turbidity currents are more common than at the deep site (de

Stigter et al., 2007). Also changes in the sea surface productivity

may have contributed to the observed changes in OM parameters

in 2006.

The highest values of sediment OM content were consistently

found at the mid-canyon station, which supports the view that

this site is a deposition center, whereas OM quantity and quality

were consistently higher when compared to greater depths (Garcia

et al., 2007; Ingels et al., 2009; Kiriakoulakis et al., 2011). The high

C:N ratios in all samples confirm that the organic component of

the sediments consists of (degraded) phytoplanktonic material,

with variable contributions of terrigenous matter along the can-

yon. Particularly at the deeper station there is more refractory

material from terrigenous origin present (de Stigter et al., 2007;

García and Thomsen, 2008; Ingels et al., 2009, Kiriakoulakis et al.,

2011).

4.2. Meiofauna densities in relation to the environment

The decrease in meiofauna abundance from 2005 to 2006 at

both stations was highly related with sedimentary environmental

parameters. The subsequent abundance increase at the mid-

station in 2007 implies recovery of the meiofauna community

that is able to thrive on the increased levels of OM. The

meiobenthic response to environmental change linked to physi-

cal disturbance observed here is similar to that reported in the

Mediterranean Sea (Guidi-Guilvard et al., 2005, 2009; Pusceddu

et al., 2013). Following disturbance, meiofaunal abundances may

decrease as animals are flushed away with the sediment or are

diluted in the extra sediments transported and deposited along

the canyon, or driven by increased mortality caused by the

physical stress (Guidi-Guilvard et al., 2009). Also a key factor to

consider is how granulometry determines spatial and structural

conditions for endobenthos directly and indirectly via the reg-

ulation of the chemical environment (Giere, 2009). Grain size has

profound effects on meiobenthic communities, which are often

related to the oxygen and organic content in the sediments

(Schratzberger et al., 2004). Significant inter-annual differences

in meiofaunal abundance were related with changes of the

quality (CPE and chl a) and bioavailability of the OM (chl a:

TOC) in the sediment over time. Supporting this is the fact that

meiofauna standing stocks are highly dependent on the food

quantity that arrives at the deep-sea floor, but also on the

nutritional value of the OM supplied (e.g. Gage and Tyler, 1991;

Vincx et al., 1994; Smith and Druffel, 1998). The effect of OM

quantity and quality was also expressed in the differences

between stations, with meiofaunal abundance being consistently

lower at the deeper station compared to the mid-canyon station.

This is in agreement with OM being of lesser quality or more

degraded when more time is needed for it to reach the deeper

areas of the canyon. The topographical differences between the

two sites and their position in the canyon would also contribute

to the variability (e.g. Ingels et al., 2013 for the Blanes Canyon in

the Mediterranean). The mid-canyon site is characterised by

Fig. 4. Principal coordinates analysis (PCO) plot based on standardized and square-

root transformed nematode genera relative abundance data and Bray–Curtis

similarity measurement for each year (2005, 2006 and 2007) and station (Mid:

ca. 3500 m and Deep: ca. 4400 m).

Table 4

Mean relative abundance of the abundant nematode genera (Z3%) per year (2005, 2006 and 2007) and station (Mid: ca. 3500 m and Deep: ca. 4400 m). Nematode

individuals that could not be identified to the genus level were grouped in the appropriate families.

2005 2006 2007

Mid % Deep % Mid % Deep % Mid % Deep %

Halalaimus 17.7 Acantholaimus 31.6 Dichromadora 17.5 Halalaimus 14.5 Halalaimus 17.9 Desmoscolex 17.8

Daptonema 9.6 Halalaimus 12.3 Halalaimus 12.7 Desmoscolex 12.2 Dichromadora 17.4 Molgolaimus 9.3

Dichromadora 9.3 Desmoscolex 11.1 Metadesmolaimus 12.0 Acantholaimus 7.5 Pomponema 10.3 Acantholaimus 7.2

Paralongicyatholaimus 8.8 Tricoma 5.7 Pomponema 6.2 Campylaimus 7.4 Retrotheristus 8.5 Campylaimus 6.3

Pomponema 7.5 Daptonema 5.7 Daptonema 5.7 Tricoma 6.1 Actinonema 5.2 Oncholaimellus 5.6

Elzalia 6.8 Dichromadora 5.3 Retrotheristus 5.0 Sphaerolaimus 4.7 Elzalia 4.6 Thalassomonhystera 4.8

Actinonema 5.1 Sphaerolaimus 3.4 Aegialoalaimus 4.7 Metadesmolaimus 4.3 Thalassomonhystera 4.3 Xyalidae 4.3

Axonolaimus 4.9 Actinonema 3.5 Daptonema 4.2 Eleutherolaimus 3.7 Daptonema 4.1

Molgolaimus 3.5 Thalassomonhystera 4.2 Paracanthonchus 3.5

Monhystrella 3.2 Greeffiella 3.2

Tricoma 3.1
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much higher sedimentation rates and is likely to recover from

any occurring disturbance event that is associated with the

canyon axis more quickly compared to the deep site, which is

positioned in the middle of the canyon floor. At the deeper site,

meiofauna standing stocks did not recover as fast as the middle

site. Meiofauna in the deeper parts of the canyon are not

regularly subjected to physicochemical stress and disturbance

as in the middle part, and therefore the community may not be as

resilient as the one inhabiting the more regularly disturbed

sediments in the upper canyon.

Table 5

Results of similarities and species contribution (SIMPER) analysis indicating (dis)similarity between years and water depths and distinguishing the genera that contributed to

the (dis)similarity. Individual genus cut-off level for similarity was 5% and 3% for dissimilarity.

Year 2005 56.3 Year 2006 64.5 Year 2007 62.2 Mid 61.1 Deep 59.9

SIMPER similarity (%, contribution 45%)

Halalaimus 12.9 Halalaimus 10.0 Dichromadora 8.7 Halalaimus 12.3 Acantholaimus 13.9

Acantholaimus 12.0 Dichromadora 8.7 Halalaimus 7.9 Dichromadora 11.9 Desmoscolex 12.1

Daptonema 10.0 Metadesmolaimus 8.6 Desmoscolex 7.0 Pomponema 7.9 Halalaimus 7.5

Dichromadora 9.6 Daptonema 7.0 Campylaimus 5.9 Daptonema 7.4 Daptonema 7.1

Sphaerolaimus 5.6 Pomponema 6.3 Thalassomonhystera 5.8 Retrotheristus 6.0 Campylaimus 6.1

Desmoscolex 5.6 Daptonema 5.0 Actinonema 6.0 Tricoma 5.6

Elzalia 5.4 Dichromadora 5.2

Years 2005 vs. 2006 50.8 Years 2005 vs. 2007 51.6 Years 2006 vs. 2007 41.5 Mid vs. Deep 60.0

SIMPER dissimilarity (%, contribution 43%)

Metadesmolaimus 5.3 Thalassomonhystera 4.1 Metadesmolaimus 5.8 Desmoscolex 6.5

Acantholaimus 3.4 Acantholaimus 4.1 Molgolaimus 5.0 Acantholaimus 5.6

Molgolaimus 3.0 Molgolaimus 3.7 Halalaimus 4.3 Pomponema 4.2

Halalaimus 3.6 Xyalidae 3.4 Dichromadora 3.9

Aegialoalaimus 3.4 Retrotheristus 3.2

Halalaimus 3.2

Table 6

Mean7standard deviation of structural diversity indices per year (2005, 2006 and 2007) and station (Mid: ca. 3500 m and Deep: ca. 4400 m). H0, H1, H2 and H1: Hill (1973),

J′: Pielou's eveness (Pielou, 1969), H′: Shannon–Wiener index (Krebs, 1989), EG(51): expected number of genera.

Year Station (depth) H0 H1 H2 H1 J′ EG(51)

2005 Mid 3271 15.4271.79 9.4771.57 4.5971.30 0.7970.03 18.7171.16

Deep 2771 12.0471.07 6.8170.31 3.1770.10 0.7670.02 16.7771.45

Total 76 24.72 13.72 6.37 0.74 21.59

2006 Mid 2674 16.1473.31 11.0672.73 5.1071.25 0.8570.03 18.9072.67

Deep 3374 20.5773.18 14.5372.02 6.6971.18 0.8670.01 22.2272.29

Total 54 26.61 17.20 7.35 0.82 23.00

2007 Mid 2473 14.3572.97 10.1372.59 5.2470.78 0.8370.06 17.5472.27

Deep 2873 18.5071.68 13.1771.27 5.6370.42 0.8870.02 21.3870.88

Total 58 29.14 20.03 9.46 0.83 23.88

Total 94 31.90 18.92 7.46 0.76 24.24

Fig. 5. Relative abundance of trophic groups according to Wieser (1953) and trophic diversity index (θ!1) per each year (2005, 2006 and 2007) and station (Mid: ca. 3500 m,

Deep: ca. 4400 m). 1A: selective deposit feeders, 1B: non-selective deposit feeders, 2A: epigrowth feeders, 2B: predator/scavengers and dwt: dry weight.
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4.3. Nematodes

4.3.1. Nematode community structure and diversity in relation to the
environmental conditions

When comparing different nematode studies from canyons and

slopes at the Western Iberian margin (Dinet and Vivier, 1979;

Danovaro et al., 2000; Vanreusel et al., 1992; Garcia et al., 2007;

Ingels et al., 2009, 2011a, 2011b), it is clear that the Nazaré Canyon

exhibits lower local diversity (α diversity). However, Ingels et al.

(2009) reported that despite their lower diversity, the nematodes

assemblages in the Nazaré Canyon are distinct from the

assemblages on the continental slope and shelf, resulting in a

high turn-over or β diversity, and hence an overall higher diversity

for the Iberian Region (Danovaro et al., 2009). This phenomenon is

probably related to the greater bioavailability of the OM and its

nutritional value as well other environmental conditions that

enhance faunal diversity (Dell'Anno et al., 2013).

No correlation was found between the structural or trophic

diversity indices and the environmental variables. The H1 index,

based on relative abundances of the different genera, increased

from 2005 to 2007 suggesting a rise in evenness over the three

years. Considering the assumed disturbance event between 2005

and 2006, these results agree with other recent findings, whereby

high nematode diversity occurred following recolonisation of

defaunated sediments (Gallucci et al., 2008; Pusceddu et al.,

2013). The high nematode densities in canyon sediments, and

possibly their aggregation resulting from the often patchy dis-

tribution of phytodetrital material, are likely to constitute ideal

conditions to recolonise sites that have been affected by a physical

disturbance event (Gallucci et al., 2008; Guilini et al., 2011).

Looking at the diversity indices for each station separately, we

consistently observed higher values at the mid-canyon site com-

pared to the deep site in 2005, whilst the opposite was true for

2006 and 2007. Possibly, the disturbance event(s) caused the

Fig. 6. Total and trophic group biomass values for each year (2005, 2006 and 2007) and station (Mid: ca. 3500 m, Deep: ca. 4400 m). 1A: selective deposit feeders, 1B: non-

selective deposit feeders, 2A: epigrowth feeders, 2B: predators/scavengers and dwt: dry weight.

Fig. 7. Distance-based redundancy (dbRDA) plot illustrating the DISTLM model

based on the nematode genera assemblages and the fitted environmental variables

as vectors. Parameters included in the analysis were: Sediment fractions according

to Wentworth's classification (1922): clay (%), silt (%), sand (%); total organic carbon

(TOC), total nitrogen (TN), molar carbon:nitrogen ratio (C:N); chloroplastic pig-

ments equivalents (CPE), chlorophyll a (chl a), chlorophyll a:phaeopigment ratio

(chl a:phaeo) and chlorophyll a:total organic carbon (chl a:TOC).

Table 7

Kendall-Tau correlation coefficients between the abiotic and biotic factors with

significance values (p). Abiotic factors are total organic carbon (TOC), total nitrogen

(TN), molar carbon:nitrogen ratio (C:N); chloroplastic pigments equivalents (CPE),

chlorophyll a (chl a), chlorophyll a:phaeopigment ratio (chl a:phaeo) and chlor-

ophyll a:total organic carbon (chl a:TOC). Biotic factors shown are meiofauna

abundance (ind. 10 cm-2), nematode abundance (ind. 10 cm-2), trophic diversity

(θ 1). The remaining other biotic factors (biomass, structural diversity (H0 and H1))

were also analysed but showed no correlation with the physicochemical variables.

Significance at the *po0.05 level and **po0.01.

Environmental

variables

Meiofauna

abundance

Nematode

abundance

Trophic diversity

(θ 1)

Kendall

tau

p Kendall

tau

p Kendall

tau

p

TOC 0.027 0.217 0.182 0.411 0.182 0.411

TN 0.515 0.019n 0.424 0.054 0.303 0.170

C:N  0.303 0.170  2.212 0.337  2.273 0.217

CPE 0.697 0.002nn 0.545 0.014n 0.303 0.170

chl a 0.697 0.002nn 0.606 0.006nn 0.424 0.055

chl a: phaeo  0.030 0.890  1.121 0.583  0.061 0.784

chl a: TOC 0.606 0.006nn 0.576 0.009nn 0.455 0.039n
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decrease in diversity at the middle site, and led to a reduced

disturbance-productivity relation (Paterson et al., 2011; Leduc

et al., 2012) persisting in 2006 and 2007, despite the recovery to

a more diverse and evenly distributed community in these years at

each station individually. However, we cannot exclude the possi-

bility of downward vertical migration of nematodes in response to

such disturbance episode. Increased abundance of nematodes in

subsurface layers has been reported in previous canyon studies as

a result of greater amounts of bioavailable OM in subsurface

sediments (Ingels et al., 2009).

It was clear that nematode assemblage composition differed

significantly between years and stations. This suggests that com-

munity composition may have changed significantly after the

proposed disturbance(s), initially as a persistence response or

resilience (2006) and afterwards perhaps as an early recolonisa-

tion process (2007). Despite the temporal effect on nematode

assemblages, the differences between the two sites comprised the

most important source of variability and are indicative of canyon

heterogeneity playing a substantial role in shaping communities.

This is supported by the SIMPER results, with community dissim-

ilarity between both stations being greater (60%) than the dissim-

ilarity between years (41.5–51.6%). Our analysis indicated strong

links between environmental variables and nematode community

characteristics, with variables that describe the quality of the food

contributing most to the nematode community variability (e.g. C:

N, chl a:TOC, chl a:phaeo, TN). The differences in food quality are

likely to be responsible for the contrast between the stations and

the observed differences between sampling years. The dominant

genera at the deeper site (Acantholaimus and Desmoscolex), which

are mainly responsible for the dissimilarities among depths, have

ecological characteristics that support our suggestions of a recov-

ery period. The genus Acantholaimus is known to be dominant in

deep-sea sediments, and its relative abundance usually increases

with increasing water depth, and hence diminishing food avail-

ability. It is usually associated with very low amounts of chl a in

the sediments and is considered a “persister” (Bongers et al., 1991;

Lee et al., 2001; De Mesel et al., 2006). The second most important

genus contributing to dissimilarity values between sites was

Desmoscolex, being more abundant at the deeper station.

Vanaverbeke et al. (2004) suggested that members of the family

Desmoscolecidae were more prominent in offshore deeper areas

as an opportunistic group, which would explain their high relative

abundance at the deep site in the Nazaré Canyon.

4.3.2. Nematode functional structure and biomass in relation to the
environment

Canyon communities tend to be more complex in comparison

to the adjacent slope in terms of trophic composition, particularly

in the upper layers of the sediments, due the higher levels of

bioavailable OM and recurrent hydrodynamic disturbance allow-

ing the coexistence of different ecological groups (Bianchelli et al.,

2008; Ingels et al., 2009, 2011a, 2011b, 2011c). The inter-annual

variability in trophic composition suggests an effect of variability

in food supply and/or physical disturbance event(s). The changes

observed in the relative abundance of the nematode feeding

groups between the 2005 and 2006 are in accordance with the

occurrence of a disturbance event. The increase of non-selective

deposit feeding (1B) nematodes and selective deposit feeders (1A)

at the deeper site in 2006, support the hypothesis of recolonisa-

tion/recovery. The 1B nematodes are known to exhibit recolonisa-

tion ability after disturbance and are usually considered

opportunistic and able to exploit a wider range of food sources

compared other groups (Gallucci et al., 2008; Lee et al., 2001). In

2007, an increase in trophic diversity was observed with a more

equal distribution of all trophic groups, likely resulting in a more

efficient exploitation of all available niches. Considering, the event

(s) in 2006, it is likely that the trophic composition in 2007 is the

result of the nematode assemblage reverting to the pre-

disturbance state in terms of functional composition. Such a

scenario would explain the shifts over time in terms of trophic

group structure and genus diversity.

Trophic diversity was not different between stations, but there

were station differences in relative abundance of feeding types. At

the deep station, the higher abundance of selective-deposit

feeders (1A) and epigrowth feeders (2A) was possibly linked to

their food selectivity and the lower availability of OM. However,

despite sediments at the deep station containing lower amounts

and quality of OM than at the mid-canyon site, they are still

enriched compared to the adjacent slope, and allow for the

presence of a more complex trophic community compared to

non-canyon systems (García and Thomsen, 2008; Ingels et al.,

2009).

The nematode biomass decrease during the study period at

both stations deviates from the meiofauna/nematode abundance

patterns. For 2007, no biomass increase was observed at the mid-

canyon station, whilst abundance clearly increased at this station

that year. The explanation for this may lie in the fact that only the

0–1 cm sections of the collected cores were analysed in this study.

Canyon sediments tend to have different vertical nematode dis-

tribution patterns than other deep-sea sediments (e.g. abyssal

plain), with occasionally higher abundance and biomass in subsur-

face layers compared to the continental slope (Ingels et al., 2009,

2011a). Ingels et al. (2009) reported increased individual biomass

deeper in the sediment, with the highest total biomass occurring

between 1 and 3 cm sediment depths.

The station contrasts were the most important factor for

nematode biomass (based on ECV values). Biomass values at the

mid-canyon station exceeded those of the deeper site consistently,

following the typical decrease of biomass with increasing water

depth concomitant with diminishing food input and quality

(Soetaert and Heip, 1989; Udalov et al., 2005; Rex et al., 2006).

When studying the variations of nematode dimensions based on L/
W ratios, it becomes clear that stout, shorter nematodes, with

lower individual biomass, are commonly found at the deep station.

In contrast, more slender and longer nematodes are found at the

mid-canyon station. These findings support the view that smaller

nematodes need less energy to sustain them compared to larger

nematodes which is possibly explained by considering adaptation

to low-food environments in deeper ocean areas (Thiel, 1975;

Vanaverbeke et al., 2004).

5. Conclusions

Based on our findings we conclude that there was an inter-

annual effect on meiofaunal communities and nematode func-

tional and structural diversity and biomass. The results suggest the

occurrence of one or more physical disturbance events, prior to the

2006 sampling, which shaped the environmental conditions (grain

size and food resource quantity and quality) and consequently the

benthic communities. Nevertheless, despite the observed abiotic

and biotic changes over time, the differences in the meiofauna and

particularly nematode community composition between stations

(or water depths) were greater than the observed temporal

differences. In conclusion, we suggest that inter-annual variations

occur (e.g. physical disturbances and yearly variations in food

supply) and are important in driving endofaunal assemblages in

the Nazaré Canyon, but they can be overridden by the variability

caused by habitat heterogeneity and water depth differences,

which may influence food supply and availability.
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