Universidade de Évora

Departamento de Física

Ficha de exercícios para Física I (Biologia)

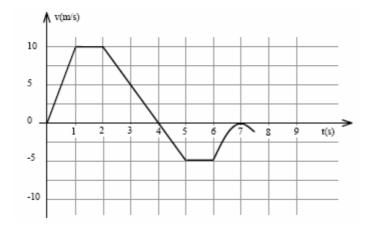
1- CÁLCULO VECTORIAL E CINEMÁTICA

A- Cálculo vectorial

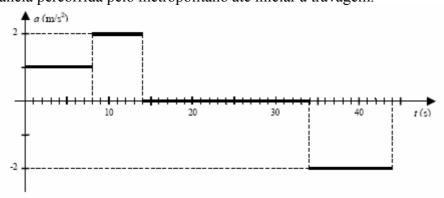
- **1.** Um caçador sai do seu acampamento e anda 6.0 km para o norte. A seguir anda 3.0 km para leste e 2.0 km para o sul, onde encontra um rio que vai em linha recta até ao seu acampamento.
- **1.1-** Qual a direcção do rio?
- 1.2- A que distância estava ele do acampamento no momento em que encontrou o rio?
- **2.** Um explorador das cavernas anda 100 m em direcção a Este. De seguida percorre 50 m na direcção N 30° O e por fim 150 m na direcção S 45° O. Após um quarto movimento não descrito, ele encontra-se no lugar onde iniciou o percurso. Caracterize este último deslocamento (módulo e direcção).
- **3.** Um vector, \vec{A} , tem módulo igual a 5 e faz com o semi-eixo positivo dos xx um ângulo de 60° .

Determine:

- **3.1-** as componentes do vector
- **3.2-** as componentes e o módulo do vector $\vec{A} \vec{B}$, sabendo que $\vec{B} = 2\vec{u}_x 5\vec{u}_y$.
- **4.** Dados os vectores $\vec{A} = 3\vec{u}_x 2\vec{u}_y \vec{u}_z$ e $\vec{B} = \vec{u}_x + 2\vec{u}_y 3\vec{u}_z$, calcular:
- **4.1-** os vectores $-\vec{B}$ e $-2\vec{B}$ e os seus módulos
- **4.2-** os vectores $\vec{A} \vec{B}$, $\vec{A} + \vec{B}$, e os seus módulos. Comparar esses valores com $|\vec{A}| |\vec{B}|$ e $|\vec{A}| + |\vec{B}|$. Comentar os resultados.
- **4.3-** o vector projecção do vector \vec{B} sobre a direcção de \vec{A} e o vector projecção do vector \vec{A} sobre a direcção de \vec{B} .
- 5. Calcule a distância entre os dois pontos de coordenadas (6, 8, 10) e (-4, 4, 10).
- **6.** Num dado instante, a velocidade, \vec{v} , e a aceleração, \vec{a} , de uma partícula, são dadas por:


$$\vec{v} = \vec{u}_x - \vec{u}_y + 2\vec{u}_z$$
$$\vec{a} = \vec{u}_x + \vec{u}_y$$

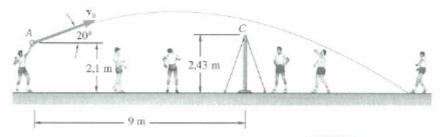
Sabe-se que o vector velocidade tem, em cada instante, a direcção da tangente à trajectória no ponto ocupado pela partícula nesse instante. Calcule:


- **6.1-** para o instante considerado no enunciado, o versor da tangente à trajectória.
- **6.2-** as componentes da aceleração segundo:
 - 6.2.1- a direcção da tangente.
 - 6.2.2- uma direcção perpendicular à tangente e contida no plano definido por \vec{v} e \vec{a} .

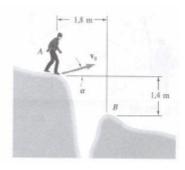
A- Cinemática

- **7.** Um atleta corre 100 m em 12 s, em seguida dá meia volta e, em 30 s, corre 50 m no sentido do ponto de partida. Calcule:
- **7.1-** o espaço percorrido e o deslocamento do atleta durante este movimento.
- 7.2- a velocidade média do atleta durante os 42 s.
- **8.** O gráfico da figura representa a velocidade escalar de um ponto material, em função do tempo. A trajectória é uma linha recta e inicialmente, o ponto material desloca-se de Sul para Norte.
- **8.1-** Indicar em qual dos três intervalos de tempo, [2, 3] s, [4, 5] s e [6, 7] s:
- i) é máximo o módulo da velocidade média.
- ii) é mínimo o espaço percorrido.
- **8.2-** Determinar a aceleração no instante t = 3 s.
- **8.3-** Durante o intervalo de tempo [2, 5] s indicar o espaço percorrido e o deslocamento do ponto material.
- **8.4-** Em que instante esteve o ponto material mais distante do ponto de partida?
- **8.5-** Construir o gráfico a(t) para o movimento deste ponto no intervalo de 0 a 7 s.

- **9.** O metropolitano viaja entre duas paragens consecutivas descrevendo uma trajectória rectilínea com aceleração indicada na figura. Determine:
- **9.1-** o intervalo de tempo Δt durante o qual o metropolitano trava até parar com uma desaceleração de 2.0 m/s²;
- 9.2- a distância percorrida pelo metropolitano até iniciar a travagem.


- **10.** A aceleração de uma partícula é definida pela relação $a = -2 \text{ m/s}^2$. Sabendo que v = 8 m/s e x = 0, quando t = 0, determine a velocidade e a posição quando t = 6 s e a distância total percorrida desde o instante inicial até t = 6 s.
- **11.** A aceleração de uma partícula é definida pela expressão: $a = A 6t^2$, em que A é uma constante. No instante t = 0, a partícula parte da posição x = 8 m com v = 0. Sabendo que em t = 1 s, v = 30 m/s, determine:
- 11.1- os instantes para os quais a velocidade é nula.
- **11.2** o espaço total percorrido até t = 7 s.
- **12.** O movimento de um ponto material é definido pela equação: $x = 2t^2 8t 1$ (SI)
- **12.1-** Qual é a forma da trajectória?
- **12.2-** Qual a coordenada da posição no início do movimento?
- 12.3- Qual a posição quando a velocidade se anula?
- **12.4-** Determine a aceleração do ponto material.
- 12.5- Caracterize o movimento.
- 13. As coordenadas de uma partícula material, com movimento no plano Oxy, variam no tempo segundo as leis (unidades SI): $x(t) = 3t \ e \ y(t) = 6t^2 + 2$
- **13.1-** Escreva a equação da trajectória da partícula material.
- **13.2-** Represente-a graficamente no plano *Oxy*.
- **13.3-** Em que sentido é que a trajectória é percorrida?
- **13.4-** Calcule a distância à origem no instante t = 2 s.
- **13.5-** Calcule o instante de tempo em que a partícula se encontra mais perto da origem e a distância à origem nesse instante.
- **14.** As equações do movimento de uma partícula (x, y em m, quando t em s) são:

$$x = 20 - 3t^2 e y = 2t + 5t^2$$


Calcular em t = 1 s:

- **14.1-** a distância da partícula à origem.
- **14.2-** os vectores velocidade e aceleração.
- 14.3- as componentes normal e tangencial da aceleração.
- **14.4-** o raio de curvatura da trajectória.
- **15.** O vector posição de uma partícula é: $\vec{r} = (8t-5)\vec{u}_x + (-5t^2 + 8t)\vec{u}_y$
- **15.1-** Qual a posição da partícula no início do movimento?
- 15.2- Em que instantes a partícula atravessa cada um dos eixos coordenados?
- 15.3- Deduza o vector velocidade da partícula.
- 15.4- Deduza o vector aceleração.
- **15.5-** Escreva a equação cartesiana da trajectória.
- **16.** Um camião move-se a uma velocidade constante de 64 km/h ao longo de uma estrada. O camião é seguido por um carro (de comprimento 4.8 m) com a mesma velocidade, que inicia a ultrapassagem com uma aceleração constante de 1.5 m/s². O camião tem 18 metros de comprimento, e é necessário que haja 12 metros de distância entre os veículos para se iniciar uma ultrapassagem segura. A ultrapassagem só é considerada terminada quando o carro se tiver distanciado 12 metros do camião.
- **16.1-** Quanto tempo demorará o carro a ultrapassar o camião?
- 16.2- Que distância percorrerá o carro na ultrapassagem?
- **16.3-** Com que velocidade o carro terminará a ultrapassagem?

- **17.** Uma bola é lançada verticalmente para baixo do topo de um edifício com velocidade 10 m/s.
- 17.1- Qual será a sua velocidade depois de cair durante 1 s?
- 17.2- Quanto é que ela cairá em 2 s?
- 17.3- Qual será a sua velocidade depois de cair 10 m?
- **17.4-** Se a bola partiu de um ponto a 40 m de altura, em quantos segundos ela atingirá o chão ? Qual será a velocidade e aceleração ao atingi-lo ? (apresente o resultado na forma vectorial).
- **18.** De acordo com a figura abaixo, um jogador de voleibol executa o serviço do jogo imprimindo à bola uma velocidade *vo*, cujo módulo é 13.4 m/s e faz um ângulo de 20° com a horizontal. Determine:
- **18.1-** se a bola passa a rede.
- **18.2-** A que distância da rede toca a bola o solo?

19. Como mostra a figura ao lado, um alpinista tenciona saltar de A para B por cima de uma fenda. Determine o menor valor da velocidade inicial v0 e o respectivo ângulo α , de modo que possa alcançar B.

C- Soluções:

2.-
$$\Delta \vec{r} = 31.07 \vec{u}_x + 62.77 \vec{u}_y$$
; N63.7°E

3.1-
$$a_x$$
=2.5; a_y =4.3

3.2-
$$0.5u_x + 9.3u_y$$
, 9.31

4.1-
$$-u_x$$
-2 u_y +3 u_z ; 2 u_x +4 u_y -6 u_z

4.2-
$$2u_x$$
- $4u_y$ + $2u_z$; $4u_x$ - $4u_z$; 5.7

4.3-
$$\hat{A} = (1/\sqrt{14}).(3u_x - 2u_y - u_z)$$

 $\hat{B} = (1/\sqrt{14}).(u_x + 2u_y - 3u_z)$

6.1-
$$0.41u_x+0.41u_y+0.82u_z$$

6.2.1-
$$1/\sqrt{6}$$

6.2.2-
$$\sqrt{11/6}$$

7.1-
$$\Delta$$
S=150m; $|\Delta r|$ =50m

8.2-
$$5\text{m/s}^2$$

8.3-
$$\Delta S=12.5m$$
; $|\Delta r|=7.5m$

13.1-
$$y=2x^2/3+2$$

14.2-
$$v = -6u_x + 12u_y$$
 m/s;
 $a = -6u_x + 10u_y$ m/s²

15.1-
$$r_0$$
=-5 u_x

15.3-
$$v=6u_x+(-10t+8)u_y$$

15.4-
$$a=-10u_y$$

15.5-
$$y=-5(x+5)^2/64+(x+5)$$

19.
$$\alpha = 26^{\circ}$$
, $v_0 = 2.94$ m/s