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Summary

This thesis is a contribution to the understanding of both the real and complex

geometry of the twistor space of a symplectic manifold. The latter is the natural

bundle of all compatible complex structures and is defined over any manifold pos-

sessing a non-degenerate 2-form. Its fibre is the Siegel domain Sp(2n,R)/U(n).

Recall that, according to a choice of a linear connection on the manifold, the twistor

space acquires an almost complex structure.

The thesis describes all ‘germs’ of twistor spaces of a Riemann surface and

shows, with an example, that we can also consider compact generalised twistor

spaces in the symplectic framework.

Conditions for maps into the twistor space to be holomorphic are given, fol-

lowing equivalent results from [22] in the case of f -twistors. A certain map is

proved to be a biholomorphism between two twistor spaces if, and only if, the

given connections are the affine transform of one another.

The riemannian geometry of twistor space with its natural hermitian metric

is considered and taken forward, somehow corroborating the complex geometry.

Later we find the best degree, in general, of holomorphic completeness of the

twistor space. This leads also to an important aspect of a ‘Penrose transform’ in

the symplectic case.

The thesis also gives some contribution to the theory of symplectic connections

in showing a new proof of the deduction of which symplectomorphisms transform a

flat translation invariant symplectic connection onto the trivial one over (R2n, ω).

This corresponds to a system of partial differential equations.

An exposition of modern differential geometry is given in the first chapter.



Contents

Introduction 2

1 7

1.1 Brief theory of connections . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Other connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 On holomorphic vector bundles . . . . . . . . . . . . . . . . . . . . 24

1.4 Symplectic connections . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 41

2.1 The fibre of the twistor space . . . . . . . . . . . . . . . . . . . . . 41

2.2 Twistor space theory . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Maps into J (M,ω, ∗) . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 73

3.1 A complex map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Kählerian twistor spaces . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Holomorphic completeness and the Penrose transform . . . . . . . . 87

3.4 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 A simple generalisation . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix A 104

Bibliography 109

1



Introduction

In order to have a good understanding of the questions raised in this thesis, we

think that a good amount of main ideas from the vast field of differential geometry

must be fairly well explained. That is the objective of chapter 1. We also wish to

introduce the reader, if not to our interpretation of the theory, then to the way we

have thought we could better make use of it.

However, we consider that we may skip some of the less trivial theories, or rather

the task of writing them down, such as a description of Lie groups, Lie derivatives

and principal bundles, or an introduction to symplectic manifolds, complex man-

ifolds and coherent sheaves, or even an exposition of the representation theory

involved in our work — which, certainly, would be all very useful in reading the

rest of the text. The reason is that such exposition could somehow affect the main

purpose of the thesis: the presentation of new results on the geometry of twistor

spaces and their proofs. Moreover, our notation is standard and the given bibli-

ography is extensive in respect to the former. In chapter 1 we are thus not fully

satisfied with the clarity of some deductions! Nevertheless, other proofs seem or

are new, so not all of the chapter appears to us as being merely serving the rest of

the thesis.

The latter is particularly true at the very end of chapter 1. Arising from earlier

results in the theory, a system of (linear) differential equations is solved in order

to conclude that certain translation invariant connections on R2n are on the orbit

of the trivial connection ∇0, i.e. they coincide with some affine transformation

σ · ∇0. Such specific result, which is already known, is kept here waiting to be

interpreted in a wider context. For instance, the following could provide such

a context: having found a new family F1 of symplectomorphisms we could now

2



3

try to find those connections invariant for all elements of F1 and then compute

the family F2 of symplectomorphisms connecting them to ∇0 or connecting them

between each other, and so forth until some Fi = ∅.

The present work began with the suggestion of Professor J. Rawnsley of looking

carefully on to the twistor space of a symplectic manifold, a space which was

considered the first time by I. Vaisman ([26]).

It is in chapter 2 that we present the theory of twistor spaces according to the

seminal articles of N. O’Brian ([20]) and J. Rawnsley ([20, 22]). The twistor space

of a symplectic manifold can be defined as a particular subset of the general twistor

space, which is the bundle of all complex structures on the tangent spaces to any

given manifold M of even dimension. For the experienced reader, we recall that

the dimensions of Sp(2n,R)/U(n) and SO(2n)/U(n) add up to the dimension of

GL(2n,R)/GL(n,C). So the symplectic twistor space, as I. Vaisman calls it, can

also be viewed as a complement to another famous subspace, which is associated

now to a given riemannian structure on the manifold and which refers to the

original idea of twistors by R. Penrose.

More precisely, the riemannian and symplectic twistor spaces are the bundles

of compatible complex structures, where compatible means orientation preserving

linear isometric in the first case and linear symplectic in the second case. Moreover,

the name ‘twistor’ is only really given to the bundle of complex structures when

this is seen together with an almost-complex structure say J ∇, which is a ‘only in

its kind’ structure to many respects. It arises with the help of a linear connection

∇ on M .

In the symplectic case the standard fibre of the bundle is non-compact. It has

n+1 connected components which appear as the highest dimension open cells in a

decomposition of Sp(n)/U(n). Along the thesis we prove what was already known

or suspected: there is no difference between the complex geometry of the various

components of symplectic twistor spaces, and we end up considering only a certain

first component. On the other hand, having another compact and complex-fibre

bundle in which to embed our space, in section 2.3 we answer the question of
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extending the twistor almost-complex structure to such bundle.

In a more general context, we prove that there do not exist certain compact

‘non-constant’ ω-twistor spaces (see the same section 2.3), which were the most

expected to exist. Nevertheless, we still were able to produce an example of a

compact ‘non-constant’ ω-twistor space. The problem of 1-point complex com-

pactification still remains. In particular, the twistor space of (S2, ω) plus one

point is diffeomorphic to P 2(C) (cf. theory of divisors in [14] and our proposition

3.5). But is there any biholomorphism?

A short notice on notation: throughout this thesis P n(C) denotes only the

underlying real symplectic manifold. Also, the very few new definitions appear

between “ ”.

It happens that in the symplectic case, even for torsion free connections, there

is a huge space parametrizing the almost-complex structures J ∇. Thus there is a

hope that twistors may be used in finding symplectic connections — selected as

those for which J ∇ is integrable. This thesis tries to show a few of the possible

connections.

The problem with which the author first met symplectic twistor spaces con-

sists just in describing the, undoubtedly, most trivial example: R2 with canonical

symplectic structure and its trivial connection. While searching for a satisfactory

and final answer we found more results and examples. Things evolved to the study

of the induced action of symplectomorphisms σ ∈ Symp(M,ω) on the twistor

space. Via affine transformation of ∇ into σ · ∇ we could then ask if there was a

biholomorphism of the twistor space under the respective complex structures. The

answer appears in theorem 3.1.

We hope that, in the future, it will be possible to see which close relations are

there to the Teichmüller space of M , since many of the induced actions, as the

above, have a correspondent in twistor space. Regretfully there is also no time in

this thesis to see the applications to the theory of hamiltonian Lie group actions on

symplectic manifolds. There are already a few straightforward statements which
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the reader may deduce from the results we show here.

We make a study of the classical geometry of the twistor space of a symplectic

manifold. It is possible to define a natural hermitian metric on it and we conclude

that the twistor space is more likely to look negatively curved on the fibers and

positively curved on its horizontal tangent planes. This is precisely what happens

when the twistor space is kählerian, which we show to happen only to a flat ∇.

If the almost-complex structure J ∇ is integrable then we also find that, vir-

tually, the twistor space of a 2n-real symplectic manifold has a core compact C-

analytic submanifold of maximal dimension n: something like the graph of a holo-

morphic section of M . This is a consequence of holomorphic n + 1-completeness.

Now, by the principle of analytic continuation, we may conjecture that, if j1, j2 are

two sections of the twistor bundle such that ji is (ji,J ∇)-holomorphic, for i = 1, 2,

and such that j1 = j2 on some open subset of M , then the equality is globally true.

The geometrical results described in the previous paragraphs will appear in

sections 3.2 and 3.3 and point again to new perspectives on the study of the

possible different integrable complex structures of a fixed Kähler base manifold.

However, if we are given two sections j1, j2 and if j1 is holomorphic with respect

to (j2,J∇), then we conclude that j1 = j2. This is a annoying corollary of section

2.4. The study in general of the twistor space of a Kähler manifold is another open

problem.

We will sometimes call attention to some particular relation between the two

subspaces sitting inside the general twistor space. However, if riemannian twistor

spaces were invented in particular for the study of manifolds which do not possess a

almost-complex structure, then the symplectic case has to serve a kind of manifold

which has always many, but sometimes not a single preferred one.

In chapters 2 and 3 we thus present various results about the symplectic twistor

space, which we consider the better the farther they are away from the other case

— except in the point where we try to define a ‘transform’ in the ∂-cohomology

of the twistor space onto a sheaf of sections on the base space, in analogy to the
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Penrose transform.

The latter led us to discover two new sheaves which are naturally defined over

any Riemann surface — see section 3.4.

Finally, we advise that the reader eager to look for the new developments on the

twistors of a symplectic manifold, having had a good experience with the up-to-

date aspects of the theory, may go directly to chapter 3. There, we have put those

results which gave us more trouble and which we consider our most independent

work.

In the end there is also an appendix, both for verification of some particular

results on representation theory of Lie groups and the completeness of this work.



Chapter 1

1.1 Brief theory of connections

This first section is more for the author’s sake than the readers’ pleasure. The

ones expert on the theory of connections are invited to proceed, assuming the

usual standard notation as the one we shall establish here.

Let E be a real or complex smooth vector bundle of rank k over a paracompact

smooth manifold M . A real or complex connection on E is an object which enables

us to describe parallel displacements in E. It can be given, for a start, by a covariant

derivative: a local operator

∇ : ΓE −→ Γ(T ∗M ⊗ E)

satisfying

∇fξ = (df)ξ + f∇ξ, (1.1)

for ξ ∈ Γ(U ;E), f ∈ C∞
U , U open in M . The tensor product above may be taken

within C when appropriate conditions are fullfield. Now, if s : U → Ek is a frame

field, i.e. s(x) = (s1(x), . . . , sk(x)) is a basis of Ex, ∀x ∈ U , then ∇ induces a local

connection 1-form ω
U

with values in gl (Rk or Ck according to the connection).

This 1-form is determined by the identity

∇s = sω
U
. (1.2)

A section ξ of E is said to be parallel if ∇ξ = 0. Given a path γ : I ⊂ R →M ,

taking local coordinates for E and M , it is a consequence of the existence of

solutions to the first order differential equation

∇ξ|γ = 0

7



1.1 Brief theory of connections 8

that there are always parallel sections along γ. Problems arise which would require

a whole frame s
U

of parallel sections on U . If a collection of such frames exists on

an open cover U = {U} of M , we say the connection is flat. This implies that the

transition functions, defined by

s
V

= s
U
g
UV

on U ∩ V , take constant values in GL. Indeed

0 = ∇s
V

= (∇s
U
)g

UV
+ s

U
dg

UV
= s

U
dg

UV
.

Conversely, such condition on a collection {s}U is sufficient too for the existence

of a flat connection on E. The proof follows trivially from the next assertion.

The 1-forms ω
U

determine themselves the covariant derivative if and only if,

when we change to the frame s
V

= s
U
g
UV

, we find that

s
V
ω
V

= ∇(s
U
g
UV

) = s
U
ω
U
g
UV

+ s
U
dg

UV
,

or equivalently

ω
V

= g−1
UV
ω
U
g
UV

+ g−1
UV

dg
UV
. (1.3)

Considerations as that on the flat case lead to the concept of the curvature R∇ of

∇. Extending the latter by Leibnitz rule to

∇ : Γ(T ∗M ⊗E) −→ Γ(∧2TM ⊗ E),

the former is defined by R∇ = R = ∇◦∇. On a section s
U

of the frame bundle of

E one must have

Rs
U

= ∇(s
U
ω
U
)

= ∇s
U
∧ ω

U
+ s

U
dω

U

= s
U
(ω

U
∧ ω

U
+ dω

U
).

This defines

ρ
U

= dω
U

+ ω
U
∧ ω

U
, (1.4)
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and a formula for dρ
U
, the so called Bianchi identity, follows straightforwardly:

dρ
U

= ρ
U
∧ ω

U
− ω

U
∧ ρ

U
.

Moreover, with no difficulty one proves both that R is a differential 2-form with

values in EndE, confirming the transformation of ρ
U

in

ρ
V

= g−1
UV
ρ
U
g
UV

just as a tensor, and that

R(X, Y )ξ = ∇
X
∇

Y
ξ −∇

Y
∇

X
ξ −∇

[X,Y ]
ξ

for any X, Y ∈ Γ(TM) = X
M
. Following the latter remark on notation, from now

on Ap(E) stands for Γ(M ;∧pT ∗M ⊗E) as it is usual.

We are glad to recall that (1.3) and (1.4) are part of E. Cartan’s structure

equations.

We shall also be using another characterisation of a connection. We fix a k-

dimensional real or complex vector space E0 and let G = GL(E0), and π0 : P →M

be the principal G-bundle of the frames of E,

P =
{
p : E0 → Ex linear isomorphism : x ∈M

}
.

Recall that we have been assuming R or C-linearity according to the connection,

but, soon, this difference will lose its relevance as it will be resolved within the

theory of connections itself. Now we want to see that ∇ determines uniquely a

global 1-form on the manifold P with values in gl(E0).

First let U be open in M and s
U

: U → P a section. Then s
U

induces a chart

of π−1
0 (U)

φ
U

: U ×G −→ π−1
0 (U)

(x, g) 7−→ s
U
(x)g.
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If (V, s
V
) is another section with s

V
= s

U
g
UV

on U ∩ V , then

φ−1
U

◦ φ
V
(x, g) = φ−1

U
(s

V
g)

= φ−1
U

(s
U
g
UV
g) = (x, g

UV
(x)g).

Omitting the projection to G, this is the same as φ−1
U

(p) = g
UV

◦ π0(p)φ
−1
V

(p).

Denoting by ϕ
U

= pr2 ◦ φ−1
U

such projection and applying Leibnitz rule, we get

dϕ
U

= d(g
UV

◦ π0)ϕV + (g
UV

◦ π0)dϕV .

Now suppose we were given a connection on E, i.e. a collection of 1-forms {ω
U
}

satisfying the precise equations stated earlier (1.2,1.3). For g ∈ G, let R
g

be right

multiplication by g in P .

Proposition 1.1. The gl-valued 1-form α defined on π−1
0 (U) by

α = Ad (ϕ−1
U

)π∗
0ωU + ϕ−1

U
dϕ

U

(ϕ−1
U

is the inverse inside G) does not depend on the choice of the maps ϕ
U

and

hence gives rise to a 1-form on P . Moreover, R∗
g
α = Ad (g−1)α.

Proof. Let us check the final result first. Using the relations ϕ
U
(s

U
g) = g, ϕ

U
◦R

g
=

R
g
◦ ϕ

U
and π0 ◦Rg

= π0, we deduce, on a point p = s
U
(x)g and a vector Y ,

R∗
h
αp(Y ) = αph(dRhp

Y )

= (gh)−1π∗
0ωU ph(dRhp

Y )gh+ (gh)−1dϕ
U ph(dRhp

Y )

= h−1g−1(R∗
h
π∗

0ωU )
p
(Y )gh+ h−1g−1d(R

h
◦ ϕ

U
)
p
(Y )

= h−1
(
g−1(π∗

0ωU )p(Y )g + g−1dϕ
U p(Y )

)
h

= Ad (h−1)αp(Y ).

Now, to see that α is globally defined (compatible with the trivialisations of the

principal bundle) we may already assume p = s
V
(x) = s

U
(x)g(p), with g(q) =

g
UV

◦ π0(q). On one hand

α = π∗
0ωV + dϕ

V
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because ϕ
V
(s

V
) = 1, and on the other

α = g−1π∗
0ωUg + g−1dϕ

U

= g−1
(
gπ∗

0ωV g
−1 − dg g−1

)
g + g−1 (dg ϕ

V
+ gdϕ

V
)

= π∗
0ωV + dϕ

V
.

�

To better understand the connection form α we must take a quick look at

the fundamental vector fields on the principal bundle P . Recall that an element

A ∈ g, where g = gl(E0), induces a 1-parameter family of diffeomorphisms of P

by R
at

(p) = p exp(tA) and that, in turn, this family determines a vector field on

P by

Ãp =
d

dt |t=0
R
at

(p),

where at = exp(tA).

Lemma 1.1. The map from g to XP which sends A to the fundamental vector field

Ã is a Lie algebra monomorphism.

Proof. Of course Ã(f) is a smooth function for any f ∈ C∞
P , since the action of G

in P is itself smooth by construction, and this is sufficient to prove Ã is smooth.

Now

dR
g
(Ãp) =

d

dt
R
g
◦R

at
(p)

=
d

dt
pgg−1atg = ˜(Ad (g−1)A)pg

because exp (tAd (g)A) = gatg
−1. Hence, up to the action on smooth functions,

[Ã, B̃] = lim
t→0

1

t

(
B̃ − dR

at
(B̃)
)

= ˜ lim
t→0

1

t

(
B − Ad (a−1

t )B
)

= [̃A,B],

since the continuity of ˜ is immediate. �

For sign matters, notice the Lie derivative above is the one which induces [X, Y ] =

XY − Y X, for all X, Y ∈ X.
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Clearly one can see that the fundamental vector fields are tangent to the fibres

of P . Indeed, they generate V = ker dπ0 — the vertical distribution. Also, going

back to the connections,

α(Ã) = ϕ−1
U

(s
U
)

d

dt |t=0
ϕ
U
(s

U
exp tA)

= 1
d

dt |t=0
exp tA = A,

on any point p = s
U
(x). If v : U → E0 is any function, from which we get a section

of E = P ×G E0, then

∇s
U
v = s

U
(s∗

U
α) v + s

U
dv (1.5)

and we have almost proved the next proposition.

Proposition 1.2. A g-valued 1-form on P satisfying α(Ã) = A on fundamental

vector fields and R∗
g
α = Ad (g−1)α determines uniquely a connection on E.

Proof. We are left to show that ∇ defined in (1.5) satisfies (1.3) with ω
U

= s∗
U
α.

So suppose s
U
, s

V
are two frame fields and s

V
= s

U
g
UV

. Consider the map k :

P ×G→ P, k(p, g) = pg. Then s
V

= k ◦ (s
U
, g

UV
), so

ds
V

= dk(ds
U
, dg

UV
) = dRg

UV
◦ ds

U
+ dLs

U
◦ dg

UV
,

where L
p

: G→ P has the obvious meaning. Now, for Zg ∈ TgG,

αpg(dLp(Zg)) = αpg

(
dL

p

(
g

d

dt |t=0
exp tg−1Zg

))

= αpg

(
d

dt |t=0
pg exp tg−1Zg

)

= g−1Zg.

Hence, this time using the second hypothesis on α,

s∗
V
α = R∗

g
UV
α(ds

U
(·)) + α

(
dLs

U
(dg

UV
(·))
)

= Ad (g−1
UV

)s∗
U
α + g−1

UV
dg

UV
,

as we wished. �

Naturally one calls parallel those (local) sections for which s∗TM ⊂ kerα —

just see what happens in formula (1.5) when v is constant. The smooth subvector
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bundle H = kerα is called the horizontal distribution, and it is in fact a comple-

ment for V in TP : again, by ordinary differential equations, we can never avoid

them once, there exists a parallel section along any curve in M , with given initial

point in P and initial tangent direction in H — a horizontal lift of the curve. Since

all sections are embeddings, one proves the assertion by counting dimensions. From

proposition 1.2 follows that Hpg = dR
g
Hp. Reciprocally, we can understand now

that a smooth family of subspaces H, complementary to the vertical distribution

and satisfying the previous right-invariance, determines a unique connection.

If the structure group of E is reducible, and hence E is associated to a principal

G-subbundle Q ⊆ P , G ⊆ GL(k), then the connection is said to be reducible to

Q if H|Q ⊂ TQ. The whole theory remains just the same in case such restriction

occurs, so from now on we assume P and G in that kind of generality. The first

example is the reduction from GL(k,R) to GL(k/2,C), the two cases we had been

dealing together. To see that the inclusion above is equivalent to ∇ being C-linear

one must reason with differentiable curves. Before we go farther, notice that had

we started with a H-connection on Q, proposition 1.2 would have led us to a unique

G-connection extension on P .

The g-valued 2-form

ρ = dα + α ∧ α (1.6)

is called the curvature of α. This is because, for any section s : U → P , s∗α = ω
U

and hence s∗ρ = ρ
U
, a g-valued form too (cf. (1.4)). Let us see other remarkable

properties.

Proposition 1.3. (i) For A ∈ g and X ∈ ΓH, we have [Ã,X] ∈ ΓH.

(ii) ρ(V, ·) = 0.

(iii) ρ is identically 0 iff ΓH is an integrable distribution.
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Proof. (i) Let at = exp tA. Then, omitting the action on functions,

[Ã,X] = lim
t→0

1

t

(
X − dR

at
(X)

)
∈ H

since the distribution is closed in TP .

(ii) Let Ã ∈ ΓV, Y ∈ X
P
. By tensoriality we may suppose Ã and B̃, the vertical

part of Y , are fundamental vector fields. Then

ρ(Ã, Y ) = Ã · α(Y ) − Y · α(Ã) − α[Ã, Y ] + α ∧ α(Ã, Y )

= Ã ·B − Y · A− α[Ã, B̃] + α ∧ α(Ã, B̃)

= −α[̃A,B] + [A,B] = 0.

(iii) ForX, Y horizontal, ρ(X, Y ) = −α[X, Y ]. Then we use Frobenius integrability

theorem. �

From the proposition we conclude that a connection is flat if and only if any, and

hence all, of the 2-forms R∇, all the ρ
U

or ρ are zero.

Theorem 1.1. A connection is flat iff its curvature is 0.

To finish the present section we recall that connections do exist on every principal

G-bundle over a paracompact manifold. Moreover, the space of all connections on

E is an affine space modelled in A1(EndE), as it is easy to show.

A necessary note on bibliography: inspiration for all the above came from

various sources like [11, 13, 16, 17].
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1.2 Other connections

Assume here all the setting from the last section. By proposition 1.2 we see that

it is possible to construct connections on EndE, ∧pE, E∗, etc, from a given con-

nection ∇ on E → M , just replacing E0 by the appropriate linear representation

space of G and composing α with the induced representation of g. Taking another

vector bundle F over M with another connection ∇1, we can also combine (rep-

resentations) ∇,∇1 to get connections in E ⊕ F or E ⊗ F . Formulas for their

curvatures follow with a little work, for example

R∇⊗∇1

= R∇ ⊗ Id + Id ⊗R∇1

,

and everything is in coherence with the trivial connection on M × R.

If Y is any homogeneous effective G-space, for each y0 ∈ Y there is a sequence

P −→ Z −→ M

of fibre bundles (in the sense of [14]) with composition π0, where Z =P ×G Y .

This induces a horizontal distribution in TZ, which is integrable if the connection

is flat — a fact which could be not true, were there not G-equivariance of the

initial distribution H over P .

One can use the previous ideas and go farther to prove, for example, that given

a metric g in E the connection will be reducible to the principal O(k)-bundle of

orthonormal frames if, and only if, ∇g = 0, using now the induced connection on

⊗2E∗. The same is true for a hermitian or a symplectic structure.

The latter will play a fundamental role in this thesis, so we recall that if (E, ω)

is a symplectic vector bundle and ∇ω = 0, then ∇ is called a symplectic connection

— with the exception only of the tangent bundle to a symplectic manifold, in the

case of which, as we shall see, an extra assumption is required.

Let σ : N → M be a smooth map. One can define a new connection σ∗∇ on
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σ∗E → N by

σ∗∇
X
σ∗ξ = σ∗(∇dσ(X)ξ),

where σ∗ξ = ξ ◦ σ, for any ξ ∈ ΓE. Clearly the sections σ∗ξ generate Γσ∗E as a

C∞
N -module. The connection will be referred to as the pull-back connection. It is

easy to prove

Rσ∗∇(X, Y ) = σ∗R∇(dσ X, dσ Y ), (1.7)

for any X, Y ∈ TN . Notice the implicit identification of σ∗EndE with End σ∗E.

Further we remark that, starting in this section, this formula will be used in many

situations until the end of our thesis.

We will also need the following differential operator d∇ : Aq(E) → Aq+1(E)

defined in degree 0 by d∇ξ = ∇ξ, and in general by

d∇ξ(X0, . . . , Xq) =
∑

i

(−1)i∇
Xi
ξ(X0, . . . , Xi−1, Xi+1, . . . , Xq)

+
∑

i<j

(−1)i+jξ([Xi, Xj ], X0, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xq)

∀Xi ∈ TM . This extension of the de Rham complex through the connection

satisfies the same sign rules over A∗-left multiplication, and had already appeared

in section 1.1 defining d∇ ◦d∇ = R∇. Seeing the latter as an element of A2(EndE)

and differentiating as above we get

d∇R∇ = 0,

which is Bianchi identity again.

Now, consider a multilinear form

f i : ×i
j=1 EndE0 −→ R or C,

with respective real or complex endomorphisms according to the connection. Let

f i be G-invariant, i.e. f i(gA1g
−1, . . . , gAig

−1) = f i(A1, . . . , Ai), ∀g ∈ G. From
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now on, if we denote a form Q ∈ Ap(EndE) by

Q = βB

then we mean β ∈ Ap and B ∈ A0(EndE). Locally, every Q is decomposable in

many ways as a sum of forms of that type.

With simple Qj = βjBj , j = 1, . . . , i, we define a new multilinear map, also

denoted f i, by

f i(Q1, . . . , Qi) = β1 ∧ . . . ∧ βi f i(B̂1, . . . , B̂i),

where B̂j is s−1Bjs : U → EndE0 and s : U → P is any local section. Extending

linearly,

f i : ⊗iA∗(EndE) −→ A∗

is surely well defined — a 0-degree local operator if one pleases.

Lemma 1.2. Let p0 = 0. Then

d(f i(Q1, . . . , Qi)) =
∑

j

(−1)p1+...+pj−1f i(Q1, . . . , d
∇Qj , . . . Qi).

Proof. In 0-degree we have

df i(B1, ... , Bi) =
∑

j

f i(B̂1, ... , dB̂j , ... , B̂i)

=
∑

j

{
f i(B̂1, ... , dB̂j , ... , B̂i) + f i(B̂1, ... , [s

∗α, B̂j], ... , B̂i)
}

=
∑

j

f i(B1, ... , d
∇Bj , ... , Bi).

The second term on the second line, the sum equal to 0, comes from an equivalent

definition of G-invariance for multilinear maps at the Lie algebra level (differenti-

ating the adjoint action Ad (exp tA) on f i). For the Qj = βjBj ,

d(f i(Q1, . . . , Qi)) =
∑

j

{
(−1)p1+...+pj−1β1 ∧ ... ∧ (dβj) ∧ ...

... ∧ βi
}
f i(B1, ... , Bi) + (−1)p1+...+piβ1 ∧ ... ∧ βi ∧ d(f i(B1, ... , Bi))
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=
∑

j

{
(−1)p1+...+pj−1f i(Q1, ... , dβj Bj , ... , Qi)

+(−1)p1+...+piβ1 ∧ ... ∧ βi ∧ f i(B1, ... , d
∇Bj , ... , Bi)

}

=
∑

j

{
(−1)p1+...+pj−1f i(Q1, ... , dβj Bj , ... , Qi)

+(−1)p1+...+pj−1f i(Q1, ... , (−1)pjβj ∧ d∇Bj, ... , Qi)
}
,

which equals the stated formula. The general case follows by linearity. �

Let f i(Q) = f i(Q, . . . , Q). As it is well known, certain symmetric multilinear

forms give origin to the Chern classes of the vector bundle in the complex setting

(cf. [16]). For general forms we still have the following.

Proposition 1.4. f i(R∇) is closed and cf
i

= [f i(R∇)] ∈ H2i(M) does not depend

on the choice of the connection.

Proof. By the lemma above and the Bianchi identity we get the first part. For the

second, we use the same proof shown in [16] for symmetric f i. Let ∇t = ∇0 + tA,

a ray of connections in the affine space. In the following we use the notation ∇ for

d∇ on E-valued forms and reserve d∇ for the EndE ones. For e ∈ E,

R∇te = (∇0 + tA)(∇0e+ tAe)

= R∇0

e+ t(d∇0

A)e+ t2(A ∧A)e

because, if we assume shortly A = αjAj , then

(d∇0

A)e = dαjAje− αj ∧ (d∇0

Aj)e

= dαjAje− αj ∧∇0(Aje) + αj ∧ Aj(∇0e)

= ∇0(αjAje) + αjAj ∧ ∇0e

= ∇0(Ae) + A ∧∇0e,

the equation one would expect. An extra line of work, using the identity just

found, but now for ∇t, proves

d∇tA = d∇0

A+ 2tA ∧ A.
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Hence ∂R∇t/∂t =d∇tA. Finally, lighting the notation,

f i(R∇1

) − f i(R∇0

) =

∫ 1

0

∂

∂t
f i(Rt, ... , Rt)dt

=

∫ 1

0

i∑

j=1

f i
(
Rt, ... ,

∂Rt

∂t
, ... , Rt

)
dt

= d

(∑∫
f i(Rt, ... , A, ... , Rt)dt

)

by lemma 1.2. �

For example, the classes induced by the form (non-symmetric for i > 2)

Tr : g × · · · × g −→ R

(B1, . . . , Bi) 7−→ Tr (B1 ◦ · · · ◦Bi)

on the tangent bundle, associate a topological charge, a number, to every compact

2i-manifold (cf. [11]). We remark that different representations g of End may be

assumed in the literature.

Just by looking at the definitions and formula (1.7) we get the following result.

Proposition 1.5. If σ is a smooth map between two manifolds, then

cf
i

(σ∗E) = σ∗ cf
i

(E).

If f i1, f
j
2 are multilinear G1, G2-invariant forms in ×iEndE01 and ×jEndE02 , res-

pectively, then the form f i1 × f j2 extends to a G1 × G2-invariant multilinear form

on

×i+jEnd (E01 ⊕E02).

The extension is f i1×f j2 (A1, . . . , Ai+j) =f i1(A1, . . . , Ai)f
j
2 (Ai+1, . . . , Ai+j), where the

Al on the right hand side are factored through the natural short exact sequences

0 −→ E0r −→ E01 ⊕E02 −→ E0r+1 −→ 0

(r mod2). Since R∇1⊕∇2
= R∇1 ⊕ R∇2

and thus preserves the direct sum, we see

by the definitions that

f i1 × f j2 (R∇1⊕∇2

) = f i1(R
∇1

) ∧ f j2 (R∇2

),

which leads us to the next proposition.
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Proposition 1.6. cf
i
1×f

j
2 (E1 ⊕ E2) = cf

i
1(E1)c

f
j
2 (E2).

We recall that there exist families {f i}
i≥0

of generically defined forms for which

the total class c =
∑

i c
f i verifies c(E1 ⊕ E2) = c(E1)c(E2). For example, the total

Chern class or the Chern character. We could go on now to the case of tensor

products, but this would take us far away from our desired course of studies.

Each module Ap(⊗lE) has its own differential operator d∇, but if we combine

the wedge product on forms with tensor product of E and F , both vector bundles

endowed with a connection, and denote again the resulting associative product by

∧, then we find the following relation.

Lemma 1.3. Let P ∈ Ap(E), Q ∈ Aq(F ). Then

d∇(P ∧Q) = d∇P ∧Q+ (−1)pP ∧ d∇Q.

Proof. We may already assume P = α e, Q = β f . Then

d∇(α ∧ β(e⊗ f))

= d(α ∧ β)e⊗ f + (−1)p+qα ∧ β∇(e⊗ f)

= (dα ∧ β + (−1)pα ∧ dβ)e⊗ f

+(−1)p+qα ∧ β(∇e⊗ f + e⊗∇f)

= (dα e) ∧ β f + (−1)pα e ∧ (dβ f)

+(−1)pα ∧ ∇e ∧ β f + (−1)pα e ∧ (−1)qβ ∧∇f

= d∇(α e) ∧ (β f) + (−1)p(α e) ∧ d∇(β f),

the formula we searched. �

We note that restricting to a second wedge product induced by

∧l1E ∧ ∧l2E −→ ∧l1+l2E
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the formula above is still valid, as there is no sign rule in covariant differentiation

of wedge products. Notice however the identity

P1 ∧ P2 = (−1)p1p2+l1l2P2 ∧ P1, (1.8)

for Pi ∈ Api(∧liE).

Suppose now that we are in the presence of a linear or affine connection1,

i.e. defined on the tangent bundle of M . The 2-tensor d∇Id = T∇ = T is very

important and known as the torsion of the connection. We see Id ∈ A1(TM).

Trivially,

T (X, Y ) = ∇
X
Y −∇

Y
X − [X, Y ].

Let us analyze this at the level of the principal bundle FM of tangent basis to M .

Let θ be the E0-valued 1-form on FM (the rank k is now the dimension of the

manifold)

θp(Z) = p−1dπ0(Z), (1.9)

where π0 : FM →M is the projection map.

Proposition 1.7. The torsion tensor of ∇ corresponds to the form

τ = dθ + α ∧ θ

on FM .

Proof. Let s : U → FM be a section and X, Y ∈ X
U
. If X = sv, with v : U → E0

smooth, then we have s∗θ(X) = v. Hence, by formula (1.5),

T (X, Y ) = s s∗α(X)s∗θ(Y ) + s d(s∗θ(Y ))(X)

−s s∗α(Y )s∗θ(X) − s d(s∗θ(X))(Y ) − s s∗θ[X, Y ]

= s (s∗(α ∧ θ)(X, Y ) + ds∗θ(X, Y ))

= s s∗(α ∧ θ + dθ)(X, Y ).

�

1There seems to have been proved that every GL(n, R) ⋊ Rn-connection is reducible to a

GL(n, R)-connection.
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In the context of a riemannian manifold (M, g) the fundamental theorem of

riemannian geometry states that there exists a unique torsion free, metric connec-

tion, the Levi-Civita connection, which we shall denote by ∇g and assume to be

very well known to all. For an almost-hermitian manifold (M,h, J) there exist,

theoretically, many hermitian linear connections: making both h and J parallel.

If g is any tensor of degree p, then we can see it as

g ∈ A0(⊗pT ∗M).

Induced by a canonical isomorphism, for each such g we have another

g̃ ∈ A0((⊗pTM)∗).

However,

d∇g̃ (X0) (X1 ⊗ . . .⊗Xp) =
(
∇

X0
g̃
)
(X1 ⊗ . . .⊗Xp)

= X0(g̃(X1 ⊗ . . .⊗Xp)) − g̃
(
∇

X0
(X1 ⊗ . . .⊗Xp)

)

= ∇
X0
g (X1, . . . , Xp),

so the isomorphism is parallel and we will not distinguish g from g̃. Next we check

that our definitions, in a special case, coincide with simple contraction.

Lemma 1.4. For Q ∈ Aq(⊗pTM), we have

Tr (g Q) = g ◦Q.

Proof. The notation is expressing the role of g Q as an element of Aq(End (⊗pTM)).

Let (x1, . . . , xn) be a chart of M and suppose

Q = q
j1 ... jp
i1 ... iq

dxi1 ∧ . . . ∧ dxiq
∂

∂x
j1 ⊗ . . .⊗ ∂

∂x
jp.

Then

Tr (g Q) = q
j1 ... jp
i1 ... iq

dxi1 ∧ . . . ∧ dxiq g

(
∂

∂x
l1 , . . . ,

∂

∂x
lp

)
·

dxl1 ⊗ . . .⊗ dxlp

(
∂

∂x
j1 , . . . ,

∂

∂x
jp

)

= q
j1 ... jp
i1 ... iq

gj1 ... jp dxi1 ∧ . . . ∧ dxiq = g(Q).

�
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After this simple lemma we are ready to present the result which was the motive

to go through the largest part of the work in the present section and which has

been in use in many ways since a long, long time ago.

Proposition 1.8. For every ω ∈ Ap,

ω = Tr (ω βp)

where βp = 1
p!
∧p Id ∈ Ap(∧pTM). Furthermore

dω = Tr (∇ω ∧ βp) + Tr (ω T∇ ∧ βp−1).

Proof. It is simple to see βp(X1, . . . , Xp) = X1 ∧ . . . ∧Xp, so the first part follows

by the lemma above. To find dω we apply lemmas 1.2 and 1.3. and compute

p! d∇βp = T ∧ Idp−1 − Id ∧ T ∧ Idp−2 + Id2 ∧ T ∧ Idp−3 − . . .

= p T ∧ Idp−1,

using (1.8). �

Applying d repeatedly to the formula just found we get generalised Bianchi iden-

tities. In particular, when T∇ = 0, we find

+�
X,Y,Z

R∇(X, Y )Z = 0,

inferred from the identity 0 = Tr (R∇ ω ∧ Id), ∀ω ∈ A1. It is the former which is

known as the Bianchi identity (cf. [13]).

A final remark: it seems one could have risked more to try to find results, like

the ones proved in this section, for any vector bundle E and not just for EndE.

And also for vector bundle-valued multilinear forms, because we do not want to

believe lemma 1.2 is merely a geometrical coincidence.
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1.3 On holomorphic vector bundles

For the moment we assume a lot of the theory of complex manifolds. The reader

will be asked, later, to recall in detail some of its basic foundations.

Suppose E → M is holomorphic and let E be the sheaf O(E). It is well known

that there exists a unique local operator

∂E : Ap,q(E) −→ Ap,q+1(E)

determined by




∂E (fe) = (∂f)e+ f∂Ee, for all f ∈ C∞, e ∈ Γ(U ;∧p,q ⊗ E),

∂Ee = 0 on an open subset U ⊂M iff e is holomorphic on U

(cf. [11]). Since ∂
2

E = 0 and

∂E (ω ∧ θ) = ∂ω ∧ θ + (−1)pω ∧ ∂Eθ,

∀ω ∈ Ak,l, θ ∈ Ap,q(E), there is a proper ring cohomology theory

Hp,∗(M, E) = ker ∂E/Im ∂E ,

which by locality can unambiguously be described through the methods of the

theory of sheaves. (Though already intensively mentioned, we are still on time

to recall the concept of ‘local operator’: if two sections on U agree in some open

V ⊂ U then their ∂E also agree.)

If φ : N → M is a smooth map between complex manifolds, then we may define

on φ∗E another local operator

φ∗∂E

exactly in the same way as we defined the pull-back connection in the previous

section. All we know is that, if φ is holomorphic, then by uniqueness ∂
φ∗E = φ∗∂E .

Let ′,′′ denote, as it is usual, the decomposition of a 1-form according to type. A

smooth hermitian structure h on a holomorphic vector bundle determines a unique
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hermitian connection D, i.e. reducible to the principal bundle of unitary frames,

such that D′′ = ′′ ◦D = ∂E : letting s
U

= (s1, . . . , sk) denote a local holomorphic

frame field and H the matrix [h(si, sj)] we must have

d(h(si, sj)) = h(Dsi, sj) + h(si, Dsj),

or simply

dH = ωt
U
H +Hω

U
.

Since ω
U

must be of type (1, 0),

∂H = ωt
U
H (1.10)

determines the connection 1-form and one checks equation (1.3) easily to get the

required D. We remark that differentiating again in dH gives ρt
U
H + Hρ

U
= 0.

Clearly R0,2 = D0,2 ◦ D = 0 and hence ρ
U

is type (1, 1). Reciprocally and more

generally, we found a proof of the following well known theorem due to Koszul and

Malgrange.

Theorem 1.2. Let M be a complex manifold and let E →M be a complex vector

bundle with a C-linear connection ∇ such that R0,2 = 0. Then E admits a unique

structure of a holomorphic vector bundle, such that ∇′′ = ∂E .

Proof. As before, let k = rkE, P
π0−→ M be the principal G-bundle associated to

E, where G ⊂ GL(k,C) is some complex Lie group, and α the connection form on

P . α and π0 induce, respectively, isomorphisms

V ≃ P × g

where V = ker dπ0 and g is the Lie algebra of G, and

H ≃ π∗
0TM

where H = kerα. Now take a holomorphic chart z : U → Cn on an open set of M .

We define an almost-complex structure on P by taking as generators for the (1, 0)-

cotangents the components of α, plus the components of d(z ◦ π0). More precisely

we extend all these to TP c = TP ⊗ C and mark them to be (1, 0)-forms. One
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can check this does not depend on the choice of the chart and thus dπ0 becomes

C-linear. Since R∗
g
α = Ad (g−1)α and R∗

g
d(z ◦ π0) = d(z ◦ π0 ◦ Rg

) = d(z ◦ π0),

the right action of G on P is (pseudo-)holomorphic. We have thus defined an

almost-complex structure on a space of orbits, namely

E = P ×G Ck

— and indeed on P×GY for every complex space Y where G acts holomorphically,

and hence by biholomorphisms. Integrability of these almost-complex structures

will arise from integrability of the almost-complex structure on P .

According to a version of the Newlander-Nirenberg’s theorem (cf. [19]), the

latter is integrable iff all the exterior derivatives of the (1, 0)-forms have no (0, 2)

part. Well, dd(z ◦π0) = 0. For α, we start by choosing any section s : U → P (not

necessarily holomorphic!) and write

α = Ad (ϕ−1)π∗
0ω + ϕ−1dϕ,

where ϕ(sg) = g, ∀g ∈ G, and ∇s = sω (cf. proposition 1.1). Now, to simplify

computations, notice that dα0,2 = 0 iff d(ϕα)0,2 = 0. Then

d(ϕα) = d(π∗
0ωϕ+ dϕ)

= π∗
0(dω)ϕ− π∗

0ω ∧ dϕ

= π∗
0(dω)ϕ− π∗

0ω ∧ ϕα + π∗
0ω ∧ π∗

0ωϕ

= π∗
0ρUϕ− π∗

0ω ∧ ϕα,

where ρ
U

is the curvature form on U ⊂ M . Since π∗
0 preserves types we have

dα0,2 = 0 iff ρ0,2
U

= 0.

One sees that a section s = (s1, . . . , sk) is holomorphic if (s∗α)′′ = 0, so

∇′′ = ∂E . Finally, for each ∂E operator, its holomorphic structure — hence the

uniqueness. �

Notice that if J is the almost-complex structure defined on P , then it preserves

the splitting

TP = H⊕ V.
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Indeed, for fundamental vertical vector fields, one can check that JÃ = ĩA, so V
and H become complex vector bundles. We can therefore ask when is the splitting

holomorphic, and conjecture that it will be so iff α is holomorphic.

We know today that whatever might have appeared, to the reader, as original

in the proof of the last theorem, then it is not: a remark in [3] already pointed

to the ideas shown above. However, we wanted to understand the close relation

between integrability on the bundle and the given condition on the base manifold.

Another interesting question is to find out which condition must a complex

connection with R0,2 = 0 on a holomorphic vector bundle satisfy, in order to this

holomorphic structure coincide with the one given by the theorem. The next result

is proved in [16] but we give our own proof.

Proposition 1.9. Let D be a C-linear connection on the tangent bundle of a

complex manifold. Then D′′ = ∂TM
iff the torsion of D is type (2, 0).

Proof. One must start by noticing that the components of the Cn-valued version

of the form θ (see 1.9), i.e. when we identify TM with T ′M = T+M canonically,

become holomorphic (1, 0)-forms. In a chart z of M , and with natural coordinates

on the principal GL(n,C)-bundle of frames, and what is more identifying TzM =

Cn, we have

θ(z,g) = g−1dz.

Now, if D′′ = ∂, then we can apply theorem 1.2. α becomes (1, 0) and holo-

morphic structures coincide, hence

τ = ∂ θ + α ∧ θ

is (2, 0). If, reciprocally, τ is of this type, then α is (1, 0) because θ is non-

degenerate on kerα, and therefore any section s is holomorphic iff (s∗α)′′ = 0, so

that D′′ = ∂. �

In the case of a linear connection, we thus have a possible answer to the question

raised before.

In particular, we have the following straightforward corollary, for which a local

correspondent on the base manifold is already known, cf. [16]. Note that it makes

no sense at ‘the unitary bundle level’.
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Corollary 1.1. (i) Any given hermitian connection over a hermitian manifold

(M,h) coincides with the unique D defined in (1.10) if, and only if, its torsion is

type (2, 0).

(ii) D is flat iff its associated connection 1-form is holomorphic.

Proof. Recall that ρ = dα + α ∧ α and that it is (1, 1), so ρ = ∂α. �

Having studied the particular case of complex manifolds, we now proceed to

take a close look at the relations between an almost-complex structure on a real

manifold and a given linear connection. As usual, let TM c = TM ⊗ C. In what

follows, our notation will not distinguish between a real connection on TM and

its twice extension to an operator Γ(TM c) → Γ(T ∗M c ⊗ TM c) — though not a

connection, it satisfies (1.1) with complexified vector fields. On notation, the same

ambiguity will hold with any covariant tensor. Instead, we denote with capital

letters the real tangent vectors and with small letters their complexifications. Let

i =
√
−1, let X′ = ΓT ′M = ΓT+M and X′′ = X′.

Let ∇ be a linear connection on the almost-complex manifold (M,J). We need

two definitions from [22, 23]: ∇ satisfies

condition (A) if ∇v X′ ⊂ X′, ∀v ∈ X′, (1.11)

and, ∇ satisfies

condition (B) if ∇u X′ ⊂ X′, ∀u ∈ X′. (1.12)

Until the end of the section we show how the above conditions do interpret the

relation between J , which is seen either as a section of End TM or as in A1(TM),

and the connection ∇. Notice the latter is assumed to be torsion free on the second

part of the following result.

Proposition 1.10. Let u, v ∈ X′.

(i) We have always (∇
X
J)T ′M ⊂ T ′′M , for any X ∈ X.
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(ii) Up to the equivalent conjugate of the above, other conditions like (A) and (B)

are impossible to happen.

(iii) The following are equivalent to condition (A):

(*) (∇u J)T ′M = 0;

(**) J∇
X
Y + J∇

JX
JY = ∇

X
JY −∇

JX
Y , ∀X, Y ∈ X.

Suppose now ∇ is torsion free.

(α) d∇J (u, v) = i(1 + iJ)[u, v] ∈ X′′;

(β) d∇J(u, v) = −i(1 − iJ)[u, v] − 2i∇vu, hence

(γ) condition (A) is equivalent to d∇J(u, v) = 0;

(δ) condition (B) implies any of the following equivalent statements:

d∇J(u, v) = 0 or [u, v] ∈ X′ or J integrable.

Proof. (i) J2 = −Id, hence (∇J)J + J(∇J) = 0.

(ii) For example, if we had chosen ∇uv ∈ X′′, then formula (1.1) would have led

us to a contradiction.

(iii) For instance, like in [22], (∇u J) v = ∇u (J − i) v = −(J − i)∇u v. (**) is just

a restatement in real vectors.

(α and β) The formula for d∇ still holds in TM c, hence

d∇J(u, v) = ∇uJv −∇vJu− J [u, v]

= −i (∇vu+ [u, v]) − i∇v u− J [u, v]

= −i(1 − iJ)[u, v] − 2i∇v u.

Even easier is the computation for (α).

(γ and δ) Recall (1 − iJ), (1 + iJ) are projections to the + and − eigen-bundles,

respectively. Then use the previous results. To get the first equivalence one also

uses the following trick: (A) implies ∇uv ∈ X′′, by conjugation.

(δ) This becomes trivial to check; for example, condition (B) implies

[u, v] = ∇uv −∇vu ∈ X′.

The last equivalence is the criteria of Newlander-Nirenberg for integrability of an

almost-complex structure. �
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Of course corresponding statements like (iii) above can be said for condition

(B). If the proposition already proves (A) and (B) to behave quite differently, the

next result shows how they really correspond to different intrinsic properties of a

riemannian manifold. It is a proposition of [23], thus a good chance to put our

methods to the test.

Proposition 1.11. For the Levi-Civita connection ∇g on an almost-hermitian

manifold (M,h, J) we have

(i) condition (A) is satisfied iff dω1,2 = 0, where ω = g(J , );

(ii) condition (B) is also necessary for J integrable.

Proof. (i) Compatibility of J with g = ℜh assures

ω =
1

2
Tr (g J ∧ Id),

as it is easy to see. Then, by propositions 1.8, 1.10 and because g2,0 = 0,

dω(u, v, w) =
1

2

{
g(d∇J(u, v), w) + g(d∇J(v, w), u) + g(d∇J(w, u), v)

}

=
1

2

{
−2ig(∇w v, u) − g(d∇J(u, w), v)

}

= i(g(∇wu, v) + g(∇wu, v))

= 2ig(∇wu, v).

(ii) Let A(u, v, w) = g(∇uv, w) — a 3-tensor on T ′M since g2,0 = 0. Then

g(∇uv, w) = u · g(v, w)− g(v,∇uw) = −g(v,∇uw)

and

0 = g([u, v], w) = g(∇uv, w) − g(∇vu, w),

assuming J is integrable. Hence A is skew in (v, w) and symmetric in (u, v), which

implies A = 0, and thus ∇uv ∈ X′. Notice gc is non-degenerate. �

If dω1,2 = 0, then M is called (1, 2)-symplectic. Finally we get the following famous

result, which leads us back to the starting point of view.

Theorem 1.3. Let (M,h, J) be almost-hermitian. Any of the following serve as

definition of a Kähler manifold:
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(i) M admits a hermitian, torsion free connection;

(ii) ∇g J = 0;

(iii) J is integrable and M is (1, 2)-symplectic (hence symplectic).

Proof. Besides h = g+ iω, notice all objects are real, and thus Dh = 0 iff Dg = 0.

This proves (i) iff (ii). For the rest, in any case ω is type (1, 1) since g is. Clearly

(ii) is the same as (A)+(B). Then recall that only if J is integrable we can say

dω3,0 = dω0,3 = 0. �

It is intriguing that dω3,0 = 0 does not imply integrability. However, the latter

arising from the vanishing of just one C-valued form would be surprising. We can

ask, then, if it is possible to find a manifold for which only dω3,0 = 0.

Notice that there are both examples of almost-hermitian manifolds satisfying

one of the conditions (A) or (B) and not the other. For (A), non-kählerian symplec-

tic manifolds are famous by now and, more refined, S6 admits a (1, 2)-symplectic

structure according to [23]. It is not known to have an integrable complex struc-

ture. For (B), we have the many hermitian non-kählerian spaces.

1.4 Symplectic connections

Let M,N be two given manifolds and σ : M → N a diffeomorphism between

them. Let ∇ be a linear connection on M . Then recall that we can define another

connection on N by

(σ · ∇)
X
Y = σ ·

(
∇

σ−1·X
σ−1 · Y

)
, (1.13)

where X, Y ∈ XN and

σ · Z y = dσ(Zσ−1(y))
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for any Z ∈ XM , y ∈ N . This connection will appear many times in this work —

also as object of our study. It is well defined, at least, on paracompact manifolds.

Indeed, from any tensor on M we can define another one on N . Notice as well

that σ · fZ = (f ◦ σ−1)σ · Z = σ · f σ · Z, for all f ∈ C∞
M , so we prove the last

statement and check (1.1) for σ · ∇. Furthermore

T σ·∇ = σ · T∇, Rσ·∇ = σ · R∇,

since σ · [Z,W ] = [σ · Z, σ ·W ]. Obvious composition rules are satisfied and

(σ · ∇)
X
ω = σ ·

(
∇

σ−1·X
σ∗ω

)

for any form ω on N . For instance, let us prove the last formula:

σ ·
(
∇

σ−1·X
σ∗ω

)
(. . . , Yi, . . .) =

(
∇

σ−1·X
σ∗ω

)
(. . . , σ−1 · Yi, . . .)

= (σ−1 ·X)
(
σ∗ω(σ−1 · Y1, . . . , σ

−1 · Yq)
)

−
∑

i

σ∗ω
(
σ−1 · Y1, . . . ,∇

σ−1·X
σ−1 · Yi, . . . , σ−1 · Yq

)

= d(ωσ(Y1, . . . , Yq))(dσ
−1(X)) −

∑
ω
(
Y1, . . . , (σ · ∇)

X
Yi, . . . , Yq

)

= (σ · ∇)
X
ω (. . . , Yi, . . .).

As we said above, σ−1 · ω = σ∗ω.

Remark. In a marginal outlook to this theory we find that all characteristic

classes on TM , constructed like in proposition 1.4 with the multilinear forms f i

sayG-invariant, are fixed points of cohomology for every diffeomorphism preserving

some G-structure of M . And the proof goes as follows. Taking any G-connection

∇, assumed to exist, we then have

f i(Rσ−1·∇, . . . , Rσ−1·∇) = f i(dσ−1(σ∗R∇)dσ, . . . )

= σ∗f i(R∇, . . . , R∇).

Hence, by the independence of the induced de Rham cohomology classes from the

connection, the former are fixed points for σ∗. Of course the result is interesting
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only when Diff(M) has many arcwise-connected components.

From now on we are interested in the case where M and N are symplectic

manifolds and σ is a symplectomorphism. A linear connection on (M,ω) is called

symplectic if ∇ω = 0 and if it is torsion free. In such case, we have that σ · ∇ is

symplectic too. Indeed, this follows easily from the listed formulae. In particular

we have an action

Symp(M,ω) ×A −→ A

on the space of symplectic connections, which preserves the subspace of flat con-

nections. A is never empty.

Theorem 1.4. Every symplectic manifold admits a symplectic connection.

We just present the formulas from the proof, which is due to P. Tondeur (see [6]):

starting with any connection ∇, adding −1
2
T∇ if necessary, we may assume it to

be torsion free. Then

ω(∇1
X
Y , Z) = ω(∇

X
Y , Z) +

1

3
(∇

X
ω) (Y, Z) +

1

3
(∇

Y
ω) (X,Z)

defines a symplectic connection ∇1. Moreover, if a Lie group H acts on M by

symplectomorphisms and thus on the space of connections, then M has a H-

invariant connection if and only if it has a H-invariant symplectic connection, that

is, a fixed point in A.

Notice that a manifold with a non-degenerate 2-form and a symplectic torsion

free connection is necessarily symplectic, by proposition 1.8.

We now make an overview of some recent results from [6, 8, 9, 10, 25]. Though
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we will not use them much more they constitute an important part of the theory

of symplectic connections.

In order to choose a smaller subspace of A it was introduced a variational

principle ∫
R2 ωn,

which can be interpreted as an L2-scalar product in curvature like tensors. Notice

2n is the dimension of M . First one defines the tensor

R(X, Y, Z, T ) = ω(R(X, Y )Z, T ),

which verifies the first Bianchi identity (recall T∇ = 0) and a second Bianchi

identity

+�
X,Y,Z

(∇
X
R)(Y, Z, T, U) = 0,

and then the Ricci tensor r(X, Y ) = Tr {Z 7→ R(X,Z)Y }. Under the action of

Sp(2n,R) on the space of tensors like R the representation theory has been done,

and thus it is known that the curvature of ∇ has two irreducible components — a

very important part of the theory which is due to I. Vaisman ([25]). So we write

R = E +W where

E(X, Y, Z, T ) = − 1

2(n + 1)

{
2ω(X, Y )r(Z, T ) + ω(X,Z)r(Y, T )

+ω(X, T )r(Y, Z) − ω(Y, Z)r(X, T )− ω(Y, T )r(X,Z)
}
.

R2 is defined as the full contraction of R with the tensor ω and must agree with

E2 +W 2.

The connection is said to be of Ricci type if W = 0, and this Weyl part W

is a symplectic equivalent to the Weyl curvature tensor in conformal riemannian

geometry. In our case too, it is 0 in dimension 2. The variational principle yields

the field equations

+�
X,Y,Z

(∇
X
r)(Y, Z) = 0, (1.14)

having as particular solutions the Ricci type connections.
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Theorem 1.5. Let (M,ω) be a symplectic manifold with a Ricci type symplectic

connection. Then there exists a 1-form u such that

(∇
X
r)(Y, Z) = ω(X, Y )u(Z) + ω(X,Z)u(Y ).

Conversely, if there is such a 1-form u, the Weyl part of the curvature, W = R−E,

satisfies

+�
X,Y,Z

(∇
X
W )(Y, Z, T, U) = 0.

For the proof see [10]. A remarkable discovery in [10] is that, if (Mi, ωi,∇i) are

symplectic manifolds together with corresponding symplectic connections and such

that the symplectic ∇ = ∇1 + ∇2 over the cartesian product (M1 ×M2, ω1 + ω2)

is of Ricci type, then all three connections must be flat.

A result proved in [8] shows that with its standard metric P n(C) is of Ricci

type — as it is implicit in the last section, the Levi-Civita connection becomes a

symplectic connection in the kählerian framework.

As an example here and for later purposes we show the following result. Con-

sider (R2, ω) with its standard symplectic structure

ω =
i

2
dz ∧ dz.

Let z = x+ iy represent the usual coordinates, so that ω = dx ∧ dy, and let

∂z =
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
, ∂z =

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Proposition 1.12. Every symplectic connection on (R2, ω) is uniquely determined

by two functions α, β∈ C∞
M (C) satisfying

∇
∂z
∂z = α ∂z + β ∂z = ∇

∂z
∂z

and

∇
∂z
∂z = −α ∂z − α∂z = ∇

∂z
∂z.

The flat symplectic connections are given by the system




∂α
∂z

+ ∂α
∂z

+ |β|2 − |α|2 = 0

∂β

∂z
+ ∂α

∂z
− 2α2 + 2αβ = 0.
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The proof is elementary. Indeed, the real and torsion free assumptions, together

with
i

2
α = ω(∇

∂z
∂z, ∂z) = −ω(∂z,∇∂z

∂z),

show us the first part. Notice that for the second part we just have to develop one

equation:

∇
∂z
∇

∂z
∂z −∇

∂z
∇

∂z
∂z = 0,

but the result will not be used anymore. Because sometimes is impossible to keep

complex, we give the real correspondent of the last proposition. If

∇
∂x
∂x = b ∂x − a ∂y, ∇

∂y
∂y = d ∂x − c ∂y,

∇
∂x
∂y = c ∂x − b ∂y = ∇

∂y
∂x,

then

α = −b+ d

4
− i

a+ c

4
and β =

3b− d

4
− i

3c− a

4
.

There is a striking and long standing question about connections on Rm for

which we do not have an answer, but would like to help to clarify. To start with

we shall restrict to the case m = 2 and present a result which can be easily

generalised. Let s denote the global frame

s =

(
∂

∂x
,
∂

∂y

)

and let ∇0 = d be the trivial connection: in the example above, α = β = 0.

Proposition 1.13. Suppose ∇ = σ · ∇0, for some σ ∈ Symp(R2, ω). Then

∇s = sgdg−1

where g ◦ σ = Jacσ.

Proof. Consider the theory in pages 7 and 8. With s
V

= s and s
U

= σ · s we have

∇s
U

= σ ·
(
∇0
σ−1· s

)
= 0,
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thus the respective connection 1-forms verify ω
U

= 0 and ω
V

= gdg−1, with g given

by s
V

= s
U
g−1 or simply sg = σ · s. Since for σ = (σ1, σ2)

σ · s =

(
dσ
( ∂
∂x

σ−1

)
, dσ
( ∂
∂y

σ−1

))

=

(
∂σ1

∂x
(σ−1)

∂

∂x
+
∂σ2

∂x
(σ−1)

∂

∂y
, . . .

)

= sJacσ|σ−1

we may conclude the result. �

The question is: what is the orbit of ∇0 under the symplectomorphisms’ group

action? Necessary conditions for ∇ to be in that orbit are that it must be flat and

torsion free — for instance R∇ = σ · R∇0
= 0 — but it is not known if the former

are sufficient.

The system of partial differential equations

∇ = σ · ∇0

in variable σ is 2nd-order nonlinear, but we can check that it is a 1st-order linear

composed with Jacσ|σ−1 . Moreover, R∇ = 0 translates as the integrability con-

dition of the latter linear equation. If one does not want to recur to the theory

of differential equations to see this, then we can rely on the theory of connections

and recall that there exist local parallel frame fields for ∇. Then, translating back

all the parallel frames si on the cover {Ui} of R2 to the frame s by si = sgi, we

have that gig
−1
j is constant. So it is a very simple problem of the cohomological

type to construct a global (not unique) map g : R2 → SL(2) = Sp(2,R) such that

∇s = sgdg−1. Still, do there exist σ ∈ Symp(R2, ω) such that

g ◦ σ = Jacσ ?

This time T∇ = 0 is the necessary condition for the last equation to have solutions,

namely Schwartz equality of crossed derivatives.

Supposing solutions σ exist, composing them with any translation x 7→ x +

v, v ∈ R2, will also give a solution. Indeed, these maps are in the isotropy subgroup

of ∇0, which by proposition 1.13 is Symp(R2, ω)
∇0

= SL(2) ⋊ R2. So we may look
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for σ such that σ(0) = 0. Moreover, assuming g(0) = 1 is not a problem either, as

one deduces from the formula in the proposition — it corresponds henceforth to a

gauge transformation.

To illustrate the question above and others to follow, within the framework of

symplectic geometry, we give a simple (!) example: consider the open set R+ × R

and, as in the previous example, in real coordinate functions, take the connection

a = c = 0, d = x and b = − 1
2x

. An easy computation shows ∇ is flat. A little

extra work to find the group-valued map g, leads then to the problem of finding

(σ1, σ2) such that



√
2σ1

2
e
− σ2√

2 −√
σ1e

σ2√
2

1
2
√
σ1
e
− σ2√

2

√
2

2
√
σ1
e
σ2√

2


 =




∂σ1

∂x
∂σ1

∂y

∂σ2

∂x
∂σ2

∂y




Finally, can one solve the equations for any rational connection? What has

Poisson geometry to say besides
{
σ1, σ2

}
= det Jacσ = 1? Demanding ∇ to be

complete, i.e. all parallel curves along themselves can be defined ad infinitum,

what difference would it make? What are the orbits and isotropy subgroups of any

other connection?

There is a type of connection for which we have found a solution to the problem

raised before. Consider a symplectic connection in R2n which is translation invari-

ant, that is Tv · ∇ = ∇ for all maps Tv(x) = x+ v, v ∈ R2n. Letting ∇ = ∇0 + A

where A is a sp(2n,R)-valued 1-form, we thus must have

Tv · ∇ = ∇0 + Tv · A = ∇0 + A.

Since dTv = Id, one does not take long to conclude that Ax+v = Ax, i.e. A is a

constant 1-form.

The following theorem has appeared in [9] proved with entirely different meth-

ods.

Theorem 1.6. Let ∇ be a flat, translation invariant and symplectic connection

on the manifold R2n. Suppose ∇ = ∇0 + A. Then A(X)A(Y ) = 0 for all vectors
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X, Y , and with the map

σ(x) = x− 1

2
A(x)x

we have ∇ = σ · ∇0.

Proof. By a formula justified in proposition 1.4 we get

0 = R∇ = R∇0

+ d∇0

A+ A ∧ A

= A ∧ A

so that [A(X), A(Y )] = 0. Hence, to see A(X)A(Y ) = 0 we just have to show

A(X)A(X) = 0. Let X ∈ R2n be fixed and consider the 2-form

α(Y, Z) = ω(A(X)Y,A(X)Z).

By the torsion free assumption, A(X)Y = A(Y )X, so α also satisfies

α(Y, Z) = ω(A(Y )X,A(Z)X)

= −ω(A(Y )A(Z)X,X)

and hence, being symmetric, it must vanish — which implies A(X)A(X) = 0. This

proves the first part of the theorem.

From the results after proposition 1.13 we have seen that A = gdg−1 for some

global g ∈ A0(Sp(2n,R)). Let us find g, which will thus determine the connection

completely. Certainly, in canonical coordinates (x1, . . . , x2n)

A =
∑

Aidxi = d
(∑

xiAi

)

with constant Ai. Now let B =
∑
xiAi = A(x). Again, dBB = BdB so it is

trivial to check that

g = e−B =
∑ (−B)m

m!
.

According to the same proposition 1.13 we are left to solve the equation

e−A(σ) = Jacσ

or equivalently

1 −A(σ) = Jacσ.
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In the canonical basis (ei) of R2n, this is the same as

ei − A(σ)ei =
∂σ

∂x
i.

Letting σ(x) = x− 1
2
A(x)x then we have that

∂σ

∂x
i = ei −

1

2
A(ei)x−

1

2
A(x)ei

= ei −A(x)ei

and that

A(σ(x)) = A(x) − 1

2
A((A(x)x) = A(x),

so the given map satisfies the differential equation, as we wished. �

We acknowledge the help of [9] in seeing the A(X)A(Y ) = 0 part, in dimensions

2n ≥ 4.

One may easily find the set of non-zero 1-forms A representing flat, transla-

tion invariant symplectic connections in R2, up to a scalar factor. It is in 1-1

correspondence with the non-empty curve

{
[a : b : c : d] ∈ P 3(R) : bc− ad = 0, b2 − ac = 0

}
\{pt}

where pt = [0 : 0 : 1 : 0].



Chapter 2

2.1 The fibre of the twistor space

In the beginning of the first two sections of this chapter we intend to follow very

closely the theory of twistor spaces as presented in [20]. The twistor space is a

bundle over some manifold with a particular fibre which we start by recalling.

Let V be a fixed real vector space of even dimension 2n. Consider

J (V ) =
{
J ∈ EndV : J2 = −1

}
,

i.e. the space of all complex structures in V . For each of its elements there are

two associated complex n-dimensional subspaces of V c: the +i and −i eigenspaces

of say J , which we denote respectively by V + and V −. Choosing, by induction, a

basis of V + of the kind {Xm−iJXm}m=1, ... ,n , then {Xm, JXm} becomes a real basis

of V , and vice-versa. We recall that the conjugation map is a natural involution

of V c which implies the equal C-dimensions of those eigenspaces and hence the

requirement of even real dimension.

Consider the action of the real GL(V ) on J (V )

J 7−→ gJg−1.

From the above we see that this action is transitive and thus that

J (V ) =
GL(V )

GL(V, J)
.

As a homogeneous space, the tangent space to J (V ) at J is identified with

m
J

= {A ∈ gl : AJ = −JA} .

41
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Indeed, a decomposition of any A ∈ gl as 2A = A+ JAJ +A− JAJ shows m
J

to

be a complement of gl(V, J) = T
J
GL(V, J) in the whole gl. It is easy to check the

relations

[gl(V, J), gl(V, J)] ⊂ gl(V, J), [gl(V, J),m
J
] ⊂ m

J
,

[m
J
,m

J
] ⊂ gl(V, J),

so J (V ) is a symmetric space. Notice JAJ = −JJA for A ∈ m
J
, so left multipli-

cation by J induces a linear endomorphism β
J

of m
J

such that

β2
J

= −Id,

i.e. an almost-complex structure on J (V ).

Considering again the complex reflection of all this, let J+, J− be the projec-

tions

J+ =
1

2
(1 − iJ), J− =

1

2
(1 + iJ)

of V c to V + and V − respectively, so that 1 = J+ + J− and J+J− = J−J+ = 0.

Also we have a direct sum decomposition

gl(V )c = gl(V, J)c + m+
J

+ m−
J

(2.1)

into the 0,+i,−i eigenspaces of 1
2
adJ — this agrees with βJ on m

J
. Thus

[gl(V, J)c,m±
J
] ⊂ m±

J
, [m+

J
,m+

J
] = 0

and

[m+
J
,m−

J
] ⊂ gl(V, J)c.

For example, [A− iJA,B − iJB] = [A,B] − [JA, JB] − i([JA,B] + [A, JB]) = 0,

for all A,B ∈ m
J
. Henceforth, according to [17, 20], J (V ) has a unique real

GL(V )-invariant complex structure whose (1, 0)-tangent space at J is m+
J
.

Proposition 2.1. If a = a0 + a+ + a− ∈ gl(V )c denotes the decomposition of a

with respect to (2.1) then

a0 = J+aJ+ + J−aJ−, a+ = J+aJ− and a− = J−aJ+.
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Proof. J+ + J− = 1, so a = J+aJ+ + J+aJ− + J−aJ+ + J−aJ−. Then

[J, a0] = iJ+aJ+ − iJ−aJ− − iJ+aJ+ + iJ−aJ− = 0,

since J on V c is (J, J) on V + ⊕ V −. The rest is proved just the same way. �

The proposition can be found in [20].

We now specialise to a subspace of J (V ). Suppose ω is a symplectic form on

the real vector space V . Let

J(V, ω, ∗) =
{
J ∈ J (V ) : ω = ω1,1 for J

}
.

Then for any vectors X, Y

0 = ω(X − iJX, Y − iJY )

= ω(X, Y ) − ω(JX, JY ) − i(ω(X, JY ) + ω(JX, Y )),

so the new imposed condition is the same as J being a symplectic linear trans-

formation of V , or what is called ‘compatible’ with ω. Consider the symmetric

form

g
J

= ω( , J ).

This non-degenerate inner product has even signature (2n − 2l, 2l), for some 0 ≤
l ≤ n, because any maximal subspace where it is positive definite is J-invariant.

We denote by J(V, ω, l) the n+1 connected components, as we shall see according

to the index 2l, of the disjoint union J(V, ω, ∗).

Remark on the sign rule: when l = 0 we want −iω(u, u) = g
J
(u, u) ≥ 0. This

gives the usual hermitian structure in V +. Also, without loss of generality assume

n = 1, we have that −iω(∂z, ∂z) = 1
2

in canonical R2 (cf. section 1.4), and this

corresponds to the complex structure

J0

(
∂

∂x

)
=

∂

∂y
.
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Finally, in oriented basis {∂x, ∂y} and in matrix form, ω(X, Y ) = −X tJ0Y .

The following generalisation of a lemma from [18] explains the topological remark

above. We give a different proof in appendix A.

Proposition 2.2. (i) None of the J(V, ω, l) are empty.

(ii) The action (2.1) of Sp(V, ω) on J(V, ω, l) is transitive.

Thus

J(V, ω, l) =
Sp(V, ω)

U(n− l, l)
,

a quotient by the pseudo-unitary group. Fixing any compatible J with index 2l, we

have an inner automorphism g 7→ −JgJ of GL(V ) which preserves Sp(V, ω) and

the respective U(n− l, l). Appealing to the theory we observe that the subspaces

we have just been describing are symmetric-subspaces of J (V ) (cf. [17]). Clearly

J ∈ u(n− l, l) too, so there is a direct sum

sp(V, ω) = u(n− l, l) + n
J

where n
J

= sp(V, ω) ∩ m
J
. One easily checks that n

J
is preserved under left

multiplication by J , thus the J(V, ω, l) are also complex submanifolds of J (V ).

To make a short break, we recall the ‘Siegel upper half space’ or ‘Siegel domain’

Dn =
{
z ∈ C

1
2
n(n+1) : z symmetric, ℑz positive definite

}

where the elements z are n×n matrices with complex entries. G = Sp(2n,R) acts

transitively on Dn by

(g, z) 7−→ g · z = (az + b)(cz + d)−1, g =


 a b

c d


 ∈ G,

where a, b, c, d are square matrices. To see that this is well defined and the action is

transitive we appeal to [24]. Easy enough is that the stabiliser of i1 is the subgroup
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of those g for which d = a and c = −b, that is the most convenient U(n). Hence

we recover J(V, ω, 0).

Now we look at Dn as an open complex manifold.

Proposition 2.3. The map φ : Dn → J(V, ω, 0) given by

x+ iy 7−→


 xy−1 −xy−1x− y

y−1 −y−1x




is a G-equivariant anti-biholomorphism.

Proof. Of course φ(i1) = J0. Suppose g ∈ G is such that

g · i1 = x+ iy.

Then φ(x+ iy) must be equal to gJ0g
−1. Using the well known relations between

the four squares inside g, which also give g−1, we can use the equation above to

write gJ0g
−1 in terms of x and y. Or rather one can check directly that the matrix

presented is a true element of J(R2n, ω, 0). By construction, φ is G-equivariant.

Since G acts by rational maps in variable z, hence by holomorphic transfor-

mations of Dn, we may conclude that multiplication by i in TDn agrees with a

G-invariant complex structure. It remains to show that this is the same as right

multiplication by J0 in n
J0

, up to the isomorphism

dp| : n
J0

−→ Ti1Dn

arising from the projection p : G→ Dn, g 7→ g · i1. If we denote

E =


 e1 e2

e3 e4


 and g(t) = exp(tE) =


 at bt

ct dt


 ,

then the following derivative taking place at point 1 makes sense.

dp(E) =
d

dt |t=0
(ati+ bt)(cti+ dt)

−1

= ȧ0i+ ḃ0 − i(ċ0i+ ḋ0) = (e1 − e4)i+ e2 + e3.

Now the result

dp(J0E) = (−e3 − e2)i+ e1 − e4 = −i dp(E)

is immediate to check. �
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We are aware that these structures are canonical so the C-analycity was likely to

correspond. Also notice that simple counter-examples show the obvious generali-

sation of the above to any signature not to hold consistent. However, we will call

equally ‘Siegel domain’ to all J(V, ω, l).

After this digression let us now search for a compact symmetric space in which

to embed all the J(V, ω, l). We appeal to the theory of flag manifolds and parabolic

subgroups. As in [7], let G
C

be a connected semisimple complex Lie group and gC

its Lie algebra. As we saw in [7], a parabolic subgroup P is the normaliser in G
C

of a parabolic subalgebra of g
C

, this is, a complex Lie subalgebra p which contains

a maximal solvable subalgebra of g
C

, or a Borel subalgebra. We recall,

P =
{
g ∈ G

C

: Ad (g)p ⊂ p
}
.

The theory says that Lie(P ) = p and that, if K is a compact real form of G
C

, then

F =
G
C

P
≃ K

K ∩ P

because K acts transitively on G
C

/P . These compact and complex spaces are the

so called flag manifolds. If G is a non-compact real form of G
C

then it may not

act transitively on F . The open orbits of this action are called flag domains.

Applying this theory to Sp(2n,C) with its two canonical real forms we were

able to show an embedding of J(V, ω, ∗) in Sp(n)/U(n), a flag manifold having all

J(V, ω, l) as disjoint flag domains. We defer the proof to appendix A.

Conjugating by some non-real group element yields the corollary: all J(V, ω, l)

are Stein spaces. Recall J(V, ω, 0) is Stein because Dn is convex and being Stein

is preserved by biholomorphism.

There is an easier way to accomplish our objectives. There is a commutative
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holomorphic diagram

J(V, ω, l)
φ−→ Gr(n, V c)

ց ր
Sp(n)/U(n)

where the map on the top is J 7→ V ′′ = V −. We shall call “real lagrangians” the

n-dimensional ω-isotropic C-subspaces W of V c such that W ∩W = 0.

Proposition 2.4. The map φ is a holomorphic embedding and has image the

locally closed manifold RLag(n, V c) of real lagrangian subspaces.

Proof. Since V ′′ = V ′, the map is injective, and by definition V ′′ = φ(J) is

isotropic. Now let W ∈ Gr(n, V c). To any g ∈ GL(V c,C) we associate a se-

quence

W
g|−→ V c p−→ V c

W

with p only depending on W . Therefore

Gr(n, V c) =
GL(V c,C)

{g = 0}

where g = p ◦ g|. Thus

T
W
Gr =

gl(V c,C)

{X = 0} ≃ Hom

(
W,

V c

W

)

where ≃ stands for X ≃ p ◦X|W . Now for real g ∈ GL(V,R)

φ(g · J) =
{
v : gJg−1(v) = −iv

}
= gV ′′.

Hence dφ : m
J
→ T

V ′′Gr satisfies dφ(A) = A and so

dφ(JA) = −dφ(AJ) = −p ◦ AJ|V ′′ = i p ◦ A|V ′′ = i dφ(A).

Notice we proved the whole embedding of J (V ) in Gr(n, V c) is holomorphic.

Now assume W ∈ RLag(n, V c). Clearly ω : V c × V c → C is non-degenerate,

so the maximal dimension an isotropic subspace can attain is precisely n. Indeed,

we have a general formula, dimW + dimW ω = 2n, where W ω is the ω-anihilator

of W .
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With the above one proves that the hemi-symmetric form on W defined by

h(w1, w2) = iω(w1, w2)

= −iω(w2, w1) = h(w2, w1)

is non-degenerate for real lagrangianW . According to the signature of this pseudo-

metric we may then define J ∈ J(V, ω, l) by Jw = −iw, ∀w ∈ W , and Jw = iw,

hence such that φ(J) = W . It is trivial to see J is real. For example

Jw = Jw = iw = Jw.

We have proved φ is a biholomorphism onto the aforesaid manifold. Notice also

RLag(n, V c) = {W : W ∩W = 0} ∩ {W : W = W ω}.

On the right hand side, the first set is open in the grassmannian and the second is

closed. �

The above is only part of either the cell or the algebraic structures of the

grassmannian. We will not pursue these in this work. As an example, in V c = C2

every line is lagrangian and there is a circle S1 in P 1(C) of non-real lines. The open

hemispheres are the two Siegel domains D = J(R2, ω, 0) and −D = J(R2, ω, 1).

2.2 Twistor space theory

We have finally come to the point where substantial preparatory material has been

examined thoroughly in order to introduce the theory of twistor spaces according to

[20, 22]. The reader will find here references to materia from all previous sections.



2.2 Twistor space theory 49

Having presented the standard fibre J (V ) of a general twistor space, plus an

important subspace of it, we now go back to the point in [20] where the “bundle

of complex structures and its almost-complex structure” is introduced. This is the

theory which will guide us through the study of the twistor space of a symplectic

manifold.

Let M be a C∞-manifold of even dimension. Consider the referred subbundle

of EndTM , which is the manifold defined as

J (M) =
⋃

x∈M
J (TxM),

and let π : J (M) →M be the projection map. We have then an associated natural

short exact sequence

0 −→ V −→ TJ (M)
dπ−→ E −→ 0 (2.2)

of vector bundles over J (M), where E = π∗TM and V = ker dπ.

At a point J ∈ J (M) such that π(J) = x the fibre of E is TxM , on which

J acts as a linear endomorphism. Thus we have a canonical section Φ of EndE

given by

Φ
J

= J.

On the other hand, each fibre of π is a complex manifold by the results of section

2.1, so we can identify the vertical tangent distribution V to the complex vector

bundle whose fibre is

[J, gl(TxM)] = {A ∈ gl(TxM) : AJ = −JA} .

Since gl(TxM) = EndE
J
, we may further regard V as the subbundle [Φ,EndE]

of EndE consisting of endomorphisms which anticommute with Φ. Consequently,

V has an endomorphism J v with square −1 which coincides with the complex

structure of each fibre. When we view V as the subbundle of EndE thus described,

J v is left multiplication by Φ.

We see that both V and E admit complex structures. We shall now make use

of a linear connection on M to create a splitting of (2.2). This will then lead us to

a ‘direct sum’ almost-complex structure on J (M).
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Let ∇ be a connection on TM . It induces a connection π∗∇ in E = π∗TM

and also in EndE. The following propositions 2.5, 2.6 and theorem 2.1 are taken

from [20]. For the sake of understanding and completeness of our exposition we

copy also their proofs.

Proposition 2.5. H∇ = {X ∈ TJ (M) : (π∗∇)
X
Φ = 0} is a complement for V

in TJ (M).

Proof. “Choose a vector space V of the same dimension as M and let F (M) be

the frame bundle of M , consisting of all linear isomorphisms

p : V −→ TxM.

This is a principal GL(V ) bundle over M , and ∇ is determined by the gl(V )-valued

1-form α on F (M) given by

∇
X
(sv) = s(s∗α)(X)v

for any v ∈ V and any section s of F (M), and

α(Ã) = A

where A ∈ gl(V ) and Ã is the vector field

Ãp =
d

dt |0
p ◦ exp tA.

kerα is a horizontal distribution on F (M). Fixing J0 ∈ J (V ), we get a map

π1 : F (M) −→ J (M) (2.3)

given by

π1(p) = pJ0p
−1.

The derivative of π1 maps the horizontal distribution on F (M) onto a horizontal

distribution on J (M). The proposition will be proved by showing that this distri-

bution coincides with H∇.

Now (2.3) is a principal GL(V, J0) bundle over J (M) which is a reduction of

π∗F (M). Thus E is associated to (2.3) with fibre V . Since Φ is a section of EndE

it corresponds with an equivariant function Φ̂ on F (M) given by

Φ̂(p) = p−1Φπ1(p)p = J0
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and thus constant. But (π∗∇)Φ corresponds to the 1-form

dΦ̂ + [α, Φ̂].

Since Φ̂ is constant this is just [α, Φ̂]. If Y is in TpF (M) and X = dπ1(Y ) then

(π∗∇)
X
Φ corresponds with the endomorphism [αp(Y ), J0]. If Y is horizontal this

gives (π∗∇)
X
Φ = 0 so X ∈ H∇. If Y is vertical for the projection onto M then

[αp(Y ), J0] = 0 if and only if αp(Y ) ∈ gl(V, J0) and this in turn happens if and

only if Y ∈ ker dπ1p. Since dπ1 is surjective this gives the result.” ([20, pages

37–38].) �

Let

P : TJ (M) −→ V

be the projection onto V with kernel H∇. We may view it both as a V- and as

a EndE-valued 1-form on J (M). Now, implied by the previous reasons, we find

that (π∗∇)Φ corresponds with the 1-form [α, Φ̂] on F (M). In terms of the bundle

map P , this gives place to the next conclusion (note that we are just following

[20]).

Proposition 2.6. (π∗∇)Φ = [P,Φ] = 2P Φ.

Since H∇ is complementary to V, dπ : H∇ → E is an isomorphism so we can

transport Φ from E to H∇ to give an endomorphism J h of H∇ with square −1

and

J ∇ = (J v,J h)

is then the referred almost complex structure on J (M) — which depends only on

the choice of the connection on TM .

Note also that the above proof shows that

TJ (M) = F (M) ×GL(V,J0) m
J0
⊕ V.

So J ∇ corresponds with the constant function on F (M) which is left multiplication

by J0 on m
J0

and J0 itself on V . It follows that the (0, 1)-tangents for J ∇ are

identified with the bundle associated to F (M) with m−
J0
⊕ V − as fibre.
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As presented once in (1.9), consider now the V -valued 1-form θ on F (M) defined

by

θp(X) = p−1dπ0(X),

where π0 : F (M) →M is the projection, and put

θ± = J±
0 θ.

Let

α = α0 + α+ + α−

be the decomposition of the connection form α of ∇ relative to the decomposition

as in proposition 2.1 of gl(V )c:

gl(V )c = gl(V, J0)
c + m+

J0
+ m−

J0
.

Then the components of α+, θ+ span the pull-backs to F (M) of (1,0) forms on

J (M). This is a consequence of the (0,1) tangents of J (M) having m−
J0

⊕ V − as

fibre.

Theorem 2.1. The almost-complex structure J ∇ of J (M) is integrable if and

only if the torsion T and curvature R of ∇ satisfy

J+T (J−X, J−Y ) = 0, J+R(J−X, J−Y )J− = 0,

for all X, Y ∈ TM, J ∈ J (M).

Proof. “We view the torsion and curvature of ∇ as 2-forms on F (M) with values

in V and gl(V ) respectively. They are given by [cf. proposition 1.7 and formula

(1.6)]. It is a standard result that an almost-complex structure is integrable if and

only if the (1,0) forms generate a d-closed ideal. This will be so if and only if their

pull-backs to F (M) also generate a d-closed ideal. By [the previous remarks], J ∇

is integrable if and only if the components of α+ and θ+ generate a d-closed ideal.

But, for instance,

dθ+ = J+
0 dθ = J+

0 τ − J+
0 α ∧ θ

= J+
0 τ − α+ ∧ θ − J+

0 α ∧ θ+.
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Thus dθ+ is in the ideal if and only if J+
0 τ is. Likewise

dα+ = J+
0 dαJ−

0 = J+
0 ρJ

−
0 − J+

0 α ∧ αJ−
0

and

J+
0 α ∧ αJ−

0 = J+
0 α ∧ J+

0 αJ
−
0 + J+

0 αJ
−
0 ∧ αJ−

0

= J+
0 α ∧ α+ + α+ ∧ αJ−

0 .

Thus dα+ is in the ideal if and only if J+
0 ρJ

−
0 is. Hence J ∇ is integrable if and

only if J+
0 τ and J+

0 ρJ
−
0 are in the ideal generated by θ+ (since only horizontal

forms are involved). Hence the theorem.” ([20, pages 39–40].) �

It is the almost-complex manifold (J (M),J ∇) which is called the twistor space

of M (in this thesis the adjective ‘general’ is used before, to stress that this is the

space of all complex structures).

A conclusion we may draw is that the theory above is the most correct in

which to consider and solve those problems raised, already, by twistor spaces.

Since, between many other and by following [20] again, we find that the theory

generalises naturally to several subspaces. This accounts for the length of our

presentation.

The cited article continues now with a detailed analysis of the representation

theory involved in conditions like those of theorem 2.1. In particular it was discov-

ered that if J∇ is integrable then one may change ∇ to a torsion free connection

inducing the same J ∇.

In [22, 23] a second almost-complex structure on J (M) was considered, defined

by

J ∇
2 = (−J v,J h),

from which several results on the theory of harmonic maps were obtained, some

based on the fact that this structure is never integrable. We will see later a
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particular situation where one can prove the latter in a very intuitive way (cf.

proposition 3.1). But such claim, well known for the twistor space of a riemannian

manifold, is much more essential.

Proposition 2.7. If ∇ is torsion free, J ∇
2 is not integrable.

Proof. Following the last proof, suppose α− and θ+ generate the d-closed ideal of

(1,0)-forms. Then

dθ+ = −J+
0 α ∧ θ

≡ −J+
0 αJ

−
0 ∧ θ ≡ 0 mod {α−, θ+}

Taking any (0,1)-horizontal vector u and any (0,1)-vertical v in TF (M)c, i.e. cor-

responding to some vectors in FM×GL(V,J0) m
+
J0
⊕V −, then the above is equivalent

to

J+
0 α(v)J−

0 θ(u) = 0

or J+
0 α(v)J−

0 = 0, which is absurd because m+ is not 0. �

In the following theorem we rewrite another one from [20] in a way it serves our

purposes more directly. One can consider it a very, very simple corollary. Recall

H∇ denotes ker π∗∇· Φ.

Theorem 2.2. Let Z be an almost-complex manifold and

π : Z −→M

be a smooth submersion onto M with fibres which are smoothly varying complex

manifolds. Suppose that Z has a horizontal distribution HZ which is j-related to

the horizontal distribution H∇ of a connection ∇ on TM via a pseudo-holomorphic

smooth fibre preserving map

j : Z −→ J (M).

Then integrability of JZ implies that the torsion T and curvature R of ∇ satisfy

J+Tx(J
−X, J−Y ) = 0, J+Rx(J

−X, J−Y )J− = 0

for all J ∈ j(Z) and X, Y ∈ TxM . If j is an immersion these conditions are also

sufficient.
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This result can be applied in the following situation. Suppose M has a G-

structure in the sense that TM is associated to some principal G-bundle P , and

some representation V of G. If Y is a complex homogeneous G-manifold and

j0 : Y −→ J (V )

is a holomorphic and G-equivariant map, then we get a map

P ×G Y
j−→ J (M)

↓ π
M.

Any connection on P induces horizontal distributions on Z = P×GY and J (M) =

F (P/G) ×G J (V ) which are preserved by j, and the theorem above gives the

condition for the integrability of the associated almost-complex structure JZ . This

associated almost-complex structure is constructed exactly as in the twistor space

by means of the map j0, thus making j pseudo-holomorphic.

In an eclectic style, one could try to sort the relations between theorem 1.2 and

theorem 2.2, but one has to beware that G here is not necessarily complex.

After the above construction, the theory in [20] follows through the considera-

tion of several particular cases: the riemannian twistor space, the almost-hermitian,

the quaternionic and even the octonionic structures. It omits the symplectic case,

which we wish to study. Before we go into it let us see a result which will become

obvious in section 3.1.

Corollary 2.1. If J ∇ is integrable and σ ∈ Diff(M) is a diffeomorphism pre-

serving the G-structure, then J σ·∇ is integrable.

Proof. Assuming that σ admits some ‘gauge lift’ along σ to P commuting with the

projection map, then we will have σ · J a complex structure and σ · J± = (σ · J)±

for any section J in the image of j. The result follows hence from the identities

T σ·∇ = σ · T and Rσ·∇ = σ · R. �
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Following the original idea of I. Vaisman (cf. [26]) we shall now apply all the

above to the case where (M,ω) is a symplectic 2n-real manifold, G = Sp(V, ω),

F sM is the symplectic frame bundle, Y = J(V, ω, l) with its G-complex structure

descending from that of J (V ) and ∇ is a symplectic connection (torsion free).

Hence, with J (M,ω, ∗) = Z as above, j0 is just the inclusion map, and then

as in theorem 2.2 we have

J (M,ω, l)
j−→ J (M)

π ց ւ
M.

Of course we have identities

J (M,ω, l) =
{
J ∈ J (M) : ω = ω1,1 and g

J
has sign. (2n− 2l, 2l)

}

and

π−1(x) = J(TxM,ωx, l).

Henceforth the integrability condition for J ∇ is given by theorem 2.2, since j is

the inclusion map. The condition has been further dismantled in the following

result due to F. Burstall and J. Rawnsley, after a mistaken attempt of I. Vaisman

(cf. [26]).

Theorem 2.3. J ∇ is integrable iff ∇ is of Ricci type.

For the proof see references in [8]. As we state it, the result implies that if one

of the n + 1 J (M,ω, l) is complex then they all are. Since this known property

seems not to have been written down elsewhere we give our proof in appendix A.

Starting with a complex structure on the twistor space of a symplectic manifold

it would be very interesting to be able to recover a symplectic connection on M
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inducing the same twistor structure. Such connection would thus satisfy the field

equations (1.14).

The theorem looks very much like its riemannian counterpart (see [3, 20]) since,

as the reader may recall, Ricci type is the symplectic analogue of a self dual

riemannian 4-manifold or conformally flat in dimensions > 4. Something particular

to the symplectic case is given next.

Theorem 2.4. If J ∇1
= J ∇2

then ∇1 = ∇2.

Proof. Let A = ∇2 −∇1 and define A ∈ ΓS3T ∗M by

A(X, Y, Z) = ω(A(X)Y, Z)

= ω(A(Y )X,Z) = ω(A(Z)Y,X)

for all X, Y, Z ∈ TM .

Now let X ∈ H∇1
. Then X = X2+Y , with X2 ∈ H∇2

, Y ∈ V. By propositions

2.5 and 2.6 we have

[Y,Φ] = π∗∇2
X
Φ = [π∗A(dπX),Φ].

Suppose further that J ∇1
= J ∇2

and u is a (1,0)-∇1-horizontal vector field. Then

u = u2+v, with v a (1,0)-vertical vector field because the almost-complex structure

on the fibre of the twistor space is always the same. Hence

[v,Φ] = [π∗A(dπ u),Φ] is (1, 0), ∀u ∈ H∇1 (1,0),

since we have noticed before that [gl(V, J)c,m+
J
] ⊂ m+

J
. In the base manifold this

translates as

[Ax(J
+X), J ] is (1, 0), ∀J ∈ π−1(x), ∀X ∈ TxM.

Equivalently this means the projection to every nc
J

is (1,0), or

J−A(J+X)J+ = 0

(cf. proposition 2.1). From here to the equality A3,0 = 0, ∀J , is immediate. This

says A must take values in the largest G-invariant subspace of symmetric tensors

which satisfy

A(J+
0 X, J

+
0 Y, . . .) = 0
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for some fixed J0 and all X, Y, ... . Indeed, since any J = gJ0g
−1 for some g ∈ G,

we will also have J+ = 1
2
(1 − iJ) = gJ+

0 g
−1 and therefore

0 = (g−1 · A)(J+
0 X, J

+
0 Y, . . .) = A(gJ+

0 X, gJ
+
0 Y, . . .)

= A(J+gX, J+gY, . . .)

But Sk(V +) = Sk(R2n) is irreducible under G for all k, so A must be 0. �

We would still like to remark that proposition 2.7 and theorem 2.4, for which

there are no references, are due to J. Rawnsley.

2.3 Examples

In the general programme of [20] a twistor space over some base space M is an

almost-complex manifold Z together with a submersion

f : Z −→M

with fibres almost-complex submanifolds. For each z in the fibre Zx = f−1(x) we

have an isomorphism
TzZ

Vz
−→ TxM

where Vz = ker dfz = TzZx. Since the vector space TzZ/Vz is complex, we can

bring this complex structure to TxM in order to construct a map

j : Z −→ J (M).

Of course f is a pseudo-holomorphic map with respect to some structure on M if,

and only if, j is constant along the fibres.
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If (M,ω) is a symplectic manifold we shall call Z an “ω-twistor space” if the

image of j is in J (M,ω, ∗). For example, given a symplectic connection ∇ on M ,

the tautology of the definition of J ∇, essentially

J ∇
|HJ

= J,

proves J (M,ω, ∗) to be a true ω-twistor space over M .

We have seen that the Siegel domain is non-compact and that it embeds holo-

morphically in a complex manifold, namely the grassmannian (cf. proposition 2.4).

Thus we may ask if it is possible to embed J (M,ω, ∗) holomorphically into a big-

ger space; for example, into a 1-point compactification, and, in particular, into

other bundles over M . Well, ∇ is a linear connection so the whole J (M) extends

J (M,ω, ∗). But if we demand compactness what should happen?

For example, we ask for an extension of J ∇ to the compact Sp(n)/U(n)-bundle

of C-lagrangian n-planes over the real symplectic 2n-manifold M . Unfortunately,

such extension does not exist.

Proposition 2.8. It is not possible to extend (J (M,ω, ∗),J∇) to a bigger almost-

complex manifold, of the same dimension, which is also a fibre bundle over M .

Proof. By fibre bundle we mean a submersion (cf. [14]). Assuming the extension

to a space Z exists, the theory above yields a continuous map

j : J (M,ω, ∗) −→ J (M)

on the closure of J (M,ω, ∗) in Z, because, letting z be any point on the boundary

of the ω-twistor space, projecting to a point x ∈ M , then TzZx is still a complex

vector space.

Also by continuity we have that ω = ω1,1 for j(z). But since j is the identity

in J (M,ω, ∗) we arrive at a contradiction. �
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Regarding a matter of different nature, it seems to us that the ‘non-constant’

compact ω-twistor spaces are not easy to construct or describe.

Proposition 2.9. There are no ω-twistor spaces with compact fibres of dim > 0

satisfying the hypothesis of theorem 2.2 and with the map j an immersion.

Proof. Assuming Z were such a space, then

j : Z −→ J (M,ω, ∗)

would be holomorphic when restricted to each fibre. But the Siegel domain is a

Stein manifold so its compact analytic submanifolds are points. �

Clearly the proposition avoids the holomorphic case, which induces a map j con-

stant along the fibres.

Remark. Here is an attempt to produce ‘non-constant’ ω-twistor spaces. Con-

sider a compact symplectic fibration f : Z → M (cf. [18]). There is a theorem

of W. Thurston stating that, under certain hypothesis of the topological kind, we

can build a symplectic structure on Z agreeing with the symplectic structures on

the fibres of Z (cf. [18]). Recall also that every symplectic manifold is almost-

complex for many compatible complex structures, so we can choose one JZ on Z

such that all the fibres become almost-complex submanifolds. Because the fibres

are symplectic and thus

TzZ/Vz

is symplectic ‘for’ π∗ω, we find that the induced map j will be J (M,ω, ∗)-valued,

i.e. that Z is an ω-twistor space, willingly non-constant.

For example, consider Z = P n(C)×P p(C)
f→ P n(C). Then it may be possible

that Z admits a compatible almost-complex structures for which the {z} ×P p(C)

are almost-complex but the projection f is not holomorphic.

Reassuringly, our attempt is not meaningless. In the end of this section we will
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be able to show an example.

The promised examples of twistor spaces of a symplectic manifold are about to

be presented.

Example 1. Let M = R2, ω the canonical symplectic form, ∇ any symplectic

connection on M — see proposition 1.12, from which we use the descriptions

and notations in what follows. We want to describe Z = J (M,ω, 0) in terms of

holomorphic charts, since J ∇ is always integrable. There is a simple way to see

this: R∇ is a 2-form, so it is proportional to ω. Since ω = ω1,1 for J ∈ Z, we have

R∇(J− , J− ) = 0, and then we apply theorem 2.1 to prove the claim. Otherwise

one can rely on theorem 2.3 and recall from section 1.4 that the Weyl part of the

curvature is always zero in the two dimensional case.

Now suppose v ∈ T 0,1M = T ′′ = T− for J . If v = ∂
∂z

then J ∈ −Z, so we may

already assume, up to a scalar,

v =
∂

∂z
+ w

∂

∂z

for some w ∈ C. The positive condition reads

−iω(v, v) < 0.

Since

−iω(v, v) =
1

2
dz ∧ dz

(
∂

∂z
+ w

∂

∂z
,
∂

∂z
+ w

∂

∂z

)

=
1

2
(ww − 1), (2.4)

we recover the Siegel domain D = {w : |w| < 1}. Because TM is C∞-trivial we

have

Z = M ×D π−→M.

Now working together with TZc let

u =
∂

∂z
+ w

∂

∂z
+ b

∂

∂w
+ c

∂

∂w
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be a J ∇-(0,1)-horizontal vector field, thus projecting to v = dπ(u) and where w

is the fibre variable. Recall the canonical section Φ ∈ Γ(End π∗TM) defined by

Φ
J

= J . Then

Φv = −iv

where we see v as a (0,1)-section of (π∗TM)c. We can compute the function b

solving

(π∗∇uΦ) v = 0. (2.5)

On the left hand side we have — recall proposition 1.12 —

(π∗∇uΦ) v = π∗∇uΦv − Φπ∗∇uv

= −(i+ Φ)π∗∇uv

= −(i+ Φ)

(
∇dπ(u)

∂

∂z
+ u(w)

∂

∂z
+ w∇dπ(u)

∂

∂z

)

= −(i+ Φ)

(
∇

∂z
∂z + w∇

∂z
∂z + b

∂

∂z
+ w∇

∂z
∂z + w2∇

∂z
∂z

)

= −(i+ Φ)

(
α
∂

∂z
+ β

∂

∂z
− αw

∂

∂z
− αw

∂

∂z

+b
∂

∂z
− αw

∂

∂z
− αw

∂

∂z
+ w2α

∂

∂z
+ w2β

∂

∂z

)

= −(i+ Φ)

(
(β − 2αw + b+ w2α)

∂

∂z
+ (α− 2αw + w2β)

∂

∂z

)
.

Hence (2.5) says we are in the presence of a (0,1)-vector for J , therefore, playing

in dimension 1 as we are, there exists λ ∈ C such that

(β − 2αw + b+ w2α)
∂

∂z
+ (α− 2αw + w2β)

∂

∂z
= λ

(
∂

∂z
+ w

∂

∂z

)
.

Henceforth

β − 2αw + b+ w2α = αw − 2αw2 + w3β

or

b = −β + 3αw − 3αw2 + βw3.

After all, to find the function c one would have to proceed as above but with

(1,0)-vector fields. However, this will not be happening.
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Proposition 2.10. f ∈ OZ if and only if





∂f

∂w
= 0

∂f

∂z
+ w ∂f

∂z
+
(
−β + 3αw − 3αw2 + βw3

)
∂f

∂w
= 0.

Proof. Notice ∂/∂w is a (0,1)-vector field tangent to the fibres of Z, hence the first

equation. The second is u(f) = 0. �

By Darboux’s theorem the proposition describes locally the twistor space of any

Riemann surface.

A moments’ thought on the results of proposition 2.3 and proposition 2.4 shows

that the complex structure assumed above on the Siegel disk, the usual one, is the

one which sets J ∇ in accordance with the theory. We give an independent proof

of integrability: [
∂

∂w
, u

]
=

∂b

∂w

∂

∂w
+
∂c

∂w

∂

∂w
=

∂c

∂w

∂

∂w

is again a (0,1)-vector field. For the second almost-complex structure J ∇
2 we have

[
∂

∂w
, u

]
=

∂

∂z
+
∂b

∂w

∂

∂w
+
∂c

∂w

∂

∂w
,

clearly not a linear combination of ∂
∂w

and u. This proves proposition 2.7 in real

dimension 2 — also for J (M,ω, 1)!

We have not explored the meaning of the nice cubic polynomial in w appearing

in the structure equations of the twistor space. It seems the latter could have an

algebraic structure if ∇ were an algebraic connection. On the other hand, we could

not solve the equations even in some simple cases.

Notice that the complex structure of the fibres of Z obviously extends outside

each one of them. Hence the pertinency of proposition 2.8.

Example 2. This is the trivial case: recall ∇ = d is symplectic because M = R2

is Kähler, so assume α = β = 0. We have the following global chart for Z:

φ : M ×D −→ C ×D

(z, w) 7−→ (wz − z, w).
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This map is injective if and only if |w| 6= 1. Adding a point at infinity on the right

hand side and recalling the grassmannian model of the twistor space, the same

map composed with 1/w gives a chart of J (R2, ω, 1). Curiously, this example is

the only one for which the natural fibre chart w is a globally holomorphic function.

Since C×D is convex, the connected components of J (R2, ω, ∗) with complex

structure arising from the trivial connection are Stein 2-manifolds. We shall look

upon these interesting aspects in the next chapter.

Finally the theory says, and we have confirmed it elsewhere, that

C2

span
(
ξ+wξ
|w|2−1

, 1
) ≃

(
R2, complex structure “J = w”

)

where φ(z, w) = (ξ, w).

The problem of finding charts for the flat torus or cylinder is still open. It

seems to lead into deep Analysis.

Example 3. Consider M = P 1(C) = R2 ∪ {∞} with its Kähler metric and

corresponding Levi-Civita connection, which is thus symplectic. The 2-form is

ω =
i

2

dz ∧ dz

(1 + |z|2)2

so, proceeding as in (2.4), we describe the twistors’ fibres over the open set R2 just

as before. Following the theory presented in section 1.3 about hermitian manifolds

the connection is type (1,0), i.e. transforms holomorphic sections in (1,0)-forms.

Thus ∇ on T ∗M is determined by

∇dz = α dz ⊗ dz

and a conjugate version of this equation, bearing in mind ∇ is real. Solving ∇ω = 0

leads to

α =
2z

1 + |z|2 .

Proceeding then exactly as in example 1 we find: f ∈ OJ (M−{∞},ω,0) if and only if





∂f

∂w
= 0

∂f

∂z
+ w ∂f

∂z
+ 2w(wz−z)

1+|z|2
∂f

∂w
= 0.

(2.6)
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Let (z1, w1) denote coordinates for the twistor space of M minus the other

pole. The affine transformation on the base z1 = σ(z) = 1/z can also be raised to

a J ∇-holomorphic transformation of the twistor space. w1 is defined by requiring

that

(dσ)c
(
∂

∂z
+ w

∂

∂z

)
= λ

(
∂

∂z1
+ w1

∂

∂z1

)

for some λ ∈ C. That is, the real map dσ applies a (0,1)-w-vector into a (0,1)-w1-

vector. To solve the equation we only recall the useful formulas, valid in general,

dσ

(
∂

∂z

)
=
∂σ

∂z

∂

∂z1
+
∂σ

∂z

∂

∂z1
= dσ

(
∂

∂z

)

which one may easily prove. Henceforth

w1 =
z2

z2
w

and we said (z, w) 7→ (z1, w1) is holomorphic because one verifies by straightforward

computations that if a function f(z1, w1) satisfies the system (2.6) in variables

(z1, w1) then

f

(
1

z
,
z2

z2
w

)

also satisfies the linear system in variables (z, w).

We shall see in section 3.1 that this last result is a consequence of ∇ being

σ-invariant. The latter can either be seen directly or deduced by uniqueness of

the Levi-Civita connection after verifying σ is an isometry. But this is immediate,

since dz1 = − 1
z2

dz and thus σ · ω = ω.

Example 4. This is the generalisation of example 2. Let M = R2n and

ω =
i

2

∑

k

dzk ∧ dzk.

We give a description of J (M,ω) with complex structure arising from the trivial

connection.

First notice that for any element J we can find a basis of T ′′M with vectors of

the kind

vk =
∂

∂z
k +

∑

l

wkl
∂

∂z
l
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with k = 1, . . . , n, wkl ∈ C. For, if a linear combination of the ∂/∂zl only were in

T ′′M , then the positive condition would not be satisfied. Now, ω being (1,1) for J

implies

0 = ω(vk1, vk2) = −wk1k2 + wk2k1.

The positive condition is given by

0 > −iω(vk, vk) =
1

2

∑

l

dzl ∧ dzl

(
∂

∂z
k + wkp

∂

∂z
p,
∂

∂z
k + wkq

∂

∂z
q

)

=
1

2

∑

l

(−δkl + wklwkl)

=
1

2

(
−1 +

∑

l

|wkl|2
)

where repeated indices in p, q have denoted a sum. With respect to the symmetric

matrix W = [wkl] this is equivalent to 1−WW ∗ > 0 and so we meet another well

known description of the Siegel domain J(R2n, ω, 0).

Continuing to reason as in example 1 we find that a function f on the twistor

space is holomorphic if vk(f) = 0, ∂f/∂wpq = 0. So a global chart for J (M,ω) is

given by the functions

fpq = wpq and fk = zkwkk − zk

where p ≤ q and 1 ≤ k ≤ n.

Example of a compact ω-twistor space: combining the previous example 1 with

the method explained, that which uses a theorem of Thurston, we can now describe

a ω-twistor space which is a compact symplectic fibration.

Let T2 be the flat torus R2/Z2. Consider the real manifold

Z = T2 × P 1(C)
pr1−→ T2

fibering over T2, with almost-complex structure JZ given by the following basis of

(0,1)-tangents: the vectors

∂

∂z
+

|t|
1 + |t|2

∂

∂z
and

∂

∂t
.
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z is the usual chart of R2 and t is a fixed affine coordinate of P 1(C). Note that,

for t 6= 0, we have
|1
t
|

1 + |1
t
|2 =

|t|
1 + |t|2 ,

so JZ is well defined and preserves the natural splitting of TZ. Moreover, it is

compatible with the canonical symplectic structure of Z. An easy computation

shows that JZ is not integrable, but that is not important to our purposes.

Hence Z is a twistor space, and, in fact, an ω-twistor space. This is not much

more difficult to see. The map j : Z → J (T2, ω) = T2 × D induced by dpr1 and

the C-vector bundle TZ/ ker dpr1 identifies with

j(z, t) =

(
z,

|t|
1 + |t|2

)
.

For the reader to compare with proposition 2.9, note that j is not even open along

the fibers {z} × P 1(C).

2.4 Maps into J (M,ω, ∗)

No matter which complex space, one always wants to understand either how it

parametrises other spaces and how its subspaces look like. In the case of a twistor

space, if the first problem seems to be difficult and dependent on the other space,

the second appears more tractable in terms of the peculiar decomposition of the

almost-complex structure J∇. Besides, this was already treated in [22] at least in

the case of the riemannian twistor space. We say ‘at least’ because the results we

are about to show, the study of maps into J (M,ω, ∗), happened to be completely

analogous to the results therein.
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Consider a symplectic manifold (M,ω) and another space N , together with a

smooth map ψ inducing a diagram

N
ψ−→ J (M,ω, ∗)

f ց ↓ π
M

where f is just π◦ψ. Since ψ(x) ∈ π−1(f(x)) is an ω-compatible complex structure

on each Tf(x)M and since we have a natural vector bundles’ transformation

ψ∗E −→ TM

↓ ↓
N −→ M

along f , where E = π∗TM just like in section 2.2, we see ψ as a f−1ω-compatible

complex structure on ψ∗E, which we denote by Φψ. Hence

Φψ(x) = Φψ(x) = ψ(x).

Alternatively, we think of ψ as the lagrangian C-subbundle ψ+ ⊂ ψ∗Ec over N .

Denoting E+
j = ker(j − i1) ⊂ Ec

j for any j ∈ J (M,ω, ∗), we thus have

ψ+ = ψ∗E+ = ker(Φψ − i1).

We now proceed to analyze the horizontal and vertical parts of dψ induced by

the connection-decomposition of the tangent bundle to the twistor space. Given

a symplectic connection ∇ on TM , the theory has shown us how to define a

projection

P : TJ (M,ω, ∗) −→ V

with kernel H∇ and thus an isomorphism TJ (M,ω, ∗) ≃ V ⊕E. We have

dψ : TN −→ ψ∗TJ (M,ω, ∗) = ψ∗V ⊕ ψ∗E,

and since dπ ◦ dψ = df the part in ψ∗E is just df , whilst the part in ψ∗V can be

identified with ψ∗P , viewing P as a V-valued 1-form on the twistor space. Thus

the following result from [22] still holds.

Proposition 2.11. dψ = (ψ∗P, df).
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Since [P,Φ] = (π∗∇)Φ and since the pull-back preserves all these relations in

order to let us find that [ψ∗P, ψ∗Φ] = (ψ∗π∗∇)ψ∗Φ, we thus have always

[ψ∗P (X),Φψ] = (f ∗∇)
X
Φψ, ∀X ∈ TN.

Now, because the bracket with Φ is injective in V ⊂ EndE, it follows dψ is

horizontal, i.e. ψ∗P = 0, if and only if

(f ∗∇)Φψ = 0.

One might also want to recall that an equivalent characterisation of Φψ being a

parallel complex structure is given by the condition f ∗∇
X
Γψ+ ⊂ Γψ+, ∀X ∈ TN .

Remark. To see a trivial application of the above consider a smooth section

j : M → J (M,ω, ∗). We recall that j may be integrable as a complex structure on

M but does not have to be parallel for ∇. On the other hand, since f = π◦j = Id, j

is parallel iff it is horizontal, so the horizontal sections are precisely those for which

the induced Levi-Civita connections of the metrics gj = ω( , j ) are all the same,

namely the given ∇. We conclude that the non-kählerian symplectic manifolds

cannot admit one globally horizontal section j in spite of their many symplectic

connections.

Notice furthermore that a horizontal section is always a pseudo-holomorphic

map (M, j)
j→ (J (M,ω, ∗),J∇). The proof is that

J hdjx = dπ−1j(x)dπ djx

= dπ−1dπdjx j(x)

= djx j(x).

However, on a Riemann surface j is in fact holomorphic since both j and J ∇ are

integrable at the same time.

We shall now examine what happens when we require (N, JN) to be an almost-
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complex manifold, with respect to which the map ψ is a holomorphic map into the

twistor space. We drop here the adjective ‘pseudo’ but no C-analycity is assumed

throughout the text if not explicitly mentioned.

Theorem 2.5. The following conditions are equivalent:

(i) ψ is (JN ,J ∇)-holomorphic

(ii) (α) df ◦ JN = Φψ ◦ df and

(β) f ∗∇uΦ
ψ(ψ+) = 0, ∀u ∈ T+N

(iii) (α) df(T+N) ⊂ ψ+ and

(β) f ∗∇uΓψ
+ ⊂ Γψ+, ∀u ∈ T+N .

Proof. This is again just like in [22]. ψ is holomorphic iff

dψ ◦ JN = J ∇
ψ ◦ dψ.

Splitting into horizontal and vertical parts as in proposition 2.11 we find

dπ ◦ dψ ◦ JN = Φψ dπ ◦ dψ,

which is equivalent to (ii α), and, with X ∈ TN , we have

P (dψ(JNX)) = J v
ψP (dψX). (2.7)

(2.7) is equivalently and successively transformed into the following equations:

ψ∗P (JNX) = ψ∗Φψ∗P (X)

−ψ∗Φψ∗(ΦP )(JNX) = ψ∗(ΦP )(X)

−Φψ(ψ∗π∗∇)
JNX

ψ∗Φ = (ψ∗π∗∇)
X
ψ∗Φ

Φψ(f ∗∇)
JNX

Φψ = −(f ∗∇)
X
Φψ.

For u ∈ T+N in the place of X this means

(1 + iΦψ)f ∗∇uΦ
ψ = 0.

But, as with all complex structures, we have Φψ(f ∗∇Φψ) = −(f ∗∇Φψ)Φψ and

hence we see our equation is equivalent to the present (ii β). Since for u ∈ T−N

we get the conjugate equation, thus nothing new, we conclude (2.7) is equivalent

to (ii β).
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(iii) is another restatement of the above. In particular, parts (β) were proved

equivalent in proposition 1.10 (iii *). �

Example 1. We consider again a section j of the bundle J (M,ω, ∗). Since Φj = j,

(iii α) is immediately satisfied. Clearly j is (j,J ∇)-holomorphic if and only if j

satisfies condition (B) — see definition in (1.12), section 1.3.

Furthermore, one should also show that j will satisfy condition (A) iff it is

(j,J ∇
2 )-holomorphic. This example has already been explored as a proposition in

[23], proved by different means and in the riemannian case. It explains the impor-

tance of conditions (A) and (B) for twistor theory.

Example 2. If we have two sections j1, j2 as above and assume one is a holomor-

phic map into the twistor space with respect to the other, then they are the same.

The proof is obvious from the theorem.

Example 3. For any fixed section j0, fibre preserving smooth involutions of

J (M,ω, ∗) like j 7→ −j0x j j0x, where j ∈ π−1(x), or likewise j 7→ j j0 j j0 j , are

never holomorphic.

Example 4. Notice that for any section J ∈ ΓJ (M) the bundle projection π, a

map from the twistor space, is never (J ∇, J)-holomorphic by definition of J ∇.

Considering example 3 in the previous section we have found that a section

j(z) = (z, w(z)) of J (P 1(C), ω, 0), thus in the described coordinates, is holomor-

phic if and only if w satisfies the differential equation

∂w

∂z
+ w

∂w

∂z
− 2w(wz − z)

1 + |z|2 = 0.

Notice w = 0 is a solution, the canonical complex structure. The reader may see

the deduction of the equation in comparing the proof of the following result and

the systems given in proposition 2.10 and formula (2.6). The analogy is trivial.
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Let now α, β ∈ C∞
R2(C) describe a symplectic connection on R2 just like in

example 1 of the examples section, so that we have an associated twistor space

with real coordinates (z, w). Let

P(w) = β − 3αw + 3αw2 − βw3.

Proposition 2.12. A section j(z) = (z, w(z)) of J (R2, ω, 0) is holomorphic iff w

satisfies
∂w

∂z
+ w

∂w

∂z
+ P(w) = 0.

Proof. To find this we do not use the theorem before. It is wiser to consider

holomorphic functions f on the twistor space, thus satisfying the system in propo-

sition 2.10, and then claim that j is (j,J ∇)-holomorphic if and only if f ◦ j is

holomorphic, ∀f . This corresponds to

d(f ◦ j)
(
∂

∂z
+ w(z)

∂

∂z

)
= 0.

Equivalently,

∂f

∂z
+
∂f

∂w

∂w

∂z
+
∂f

∂w

∂w

∂z
+ w

∂f

∂z
+ w

∂f

∂w

∂w

∂z
+ w

∂f

∂w

∂w

∂z
= 0

or (
P(w) +

∂w

∂z
+ w

∂w

∂z

)
∂f

∂w
= 0.

Since there exist sufficient holomorphic functions, we are finished. �

In the same spirit one finds the equation for parallel sections.



Chapter 3

3.1 A complex map

Throughout the present chapter we shall only refer to the twistor space J (M,ω, 0)

— which we simply denote by J (M,ω) — since most results will remain true with

minor changes in the text, as the reader may care to notice.

Let us first see another proof of proposition 2.7 in a particular case. Let

(X,ω, J,∇) be a kähler manifold, where ∇ is the Levi-Civita connection of g
J

=

ω( , J ). Then we may construct “little-twistors” inside J (X,ω) which will be

almost-complex submanifolds of the twistor space of X.

Consider an embedded holomorphic submanifold C in X. The real tangent

space TC is then a complex or J-invariant, and hence symplectic, subbundle of

TX|C. One can also see that TCω is complex. What we have called a little-twistor

is just J (C, ω) built with the restriction of the symplectic form ω on C, or rather

its image under the following map I. We have a commutative diagram

J (C, ω)
I−→ J (X,ω)

ρ ↓ ↓ π
C

ι−→ X

where

I(j) =

{
j on TC

J on TCω.

It is not difficult to see that, for any x ∈ C, the Siegel domain ρ−1(x) embeds

holomorphically in π−1(x) in the way described.

73
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Now, recall there is a result which says we can restrict ∇ to the submanifold C,

and then project onto TC and its orthogonal complement TCω, to define two new

connections (cf. [17]). We denote them, respectively, by ∇C and ∇⊥. Moreover,

the first is the Levi-Civita connection of C and the second is also easily seen to be

metric and symplectic. So we can use ∇C to define a twistor complex structure on

J (C, ω).

With an extra assumption, we can guarantee immediately, as we wish to, the

following result.

Lemma 3.1. If C is totally geodesic, then the smooth embedding I is holomorphic.

Proof. We thus let the inclusion ι be parallel. Recall this means ∇
X
Y ∈ ΓTC, for

all X, Y ∈ ΓTC, and that it is also equivalent to C being totally geodesic. In this

situation, we have the identity:

∇ = ∇C ⊕∇⊥.

To prove the claim, notice that, since I∗ is holomorphic along the fibres and is just

the inclusion map on the horizontal subspaces, we are left to check that I∗H∇C ⊂
H∇. Writing ΦC for the canonical section over J (C, ω), we have

I∗Φj = ΦI(j)

= j ⊕ J = ΦC
j ⊕ (ρ∗J)j

and therefore

I∗
(
π∗∇

I∗Y Φ
)

= (I∗π∗∇)
Y
I∗Φ

= ρ∗∇
Y

(
ΦC ⊕ ρ∗J

)

= ρ∗∇C
Y
ΦC ⊕ ρ∗∇⊥

Y
ρ∗J = 0

for any Y ∈ H∇C . Finally, recall I∗ is injective. �

Requiring much further study, namely to examine the converse of the lemma,

we leave here the previous constructions on little twistors. We guess they would

lead us to far away — in real geometry. There is already enough for an application,

with which we proceed.
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Let (M,ω) be a symplectic manifold with a symplectic connection ∇. We say

∇ is “locally Kähler” if for each point of M we can find a neighborhood U and a

parallel complex structure J on U compatible with ω. The following is an attempt

towards an intuitive view of proposition 2.7.

Proposition 3.1. If M admits a totally geodesic holomorphic curve and if ∇ is

locally Kähler, then the second twistor almost-complex structure is not integrable.

Proof. Since the question is local we may assume M is kählerian. Let C be the

germ of a holomorphic and parallel curve in M . If J ∇
2 were integrable, then the

little-twistor J (C, ω) passing through J would be integrable. But we know this is

never true (cf. section 2.3, example 1). �

The problem of finding some example of a symplectic connection which is not

locally Kähler must be solved, if we aim to a new concept. This is done in section

3.5.

The map we are really interested in in this section is one which is defined natu-

rally in twistor space theory and which, in the symplectic case, gives an interesting

relation between holomorphicity and symplectic connections.

Let (M,ω), (M1, ω1) be two symplectic manifolds and σ : M →M1 a symplec-

tomorphism. Then σ induces an invertible transformation of J (M,ω) = Z onto

J (M1, ω1) = Z1 preserving the fibrations π : Z →M , i.e. a map Σ such that

Z
Σ−→ Z1

π ↓ ↓ π1

M
σ−→ M1

is commutative. Indeed, for any y ∈M1, j ∈ π−1(σ−1(y)) we define

Σ(j) = dσ ◦ j ◦ dσ−1,
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which is in π−1
1 (y). It is trivial to check Σ is well defined and invertible (more

generally we deduce the invariance of the signatures of g
Σ(j)

and g
j
= σ∗g

Σ(j)
).

Assume Z,Z1 have twistor almost-complex structures J ∇ and J ∇1
, respec-

tively, where ∇1 = σ · ∇ and ∇ is symplectic.

Theorem 3.1. Σ is holomorphic.

Proof. Before we start to justify the conditions for C-analycity in theorem 2.5 no-

tice that Σ preserves the fibres and extends to a linear map between EndTσ−1(y)M

and EndTyM1. Hence

dΣ(jA) = Σ(jA)

= Σ(j)Σ(A) = Σ(j) dΣ(A)

and we may conclude that our map is vertically holomorphic.

Now conditions (ii α, β) in the referred theorem are slightly easier to check

since we just have to consider horizontal vectors over Z = J (M,ω). The map f

there is σ ◦ π here, so

d(σ ◦ π)J h
j = dσ ◦ j ◦ dσ−1 ◦ dσ ◦ dπ

= Σ(j) ◦ d(σ ◦ π)

= Σ∗Φ d(σ ◦ π)j

proves (ii α). We recover from formula (2.7) that (ii β) is equivalent to a more

recognisable expression of a holomorphic map:

(Σ∗P (u))− = 0, ∀u ∈ H∇+

where P is the usual projection inside TZ1. Obviously the latter is satisfied if

Σ∗H∇ = H∇1
. This will be exactly the case, as we shall see next, when we

consider the particular connection ∇1.

Let dimM = dimM1 = 2n and fix a real symplectic vector space V . Let

F, F1 be respectively the symplectic frame bundles of M and M1. Consider the

Sp(2n,R)-equivariant map

Λ : F −→ F1

p 7−→ dσ ◦ p
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where the points p : V → TxM are linear isomorphisms. If s : U → F is a section

around x ∈M , then

s1 = Λ ◦ s ◦ σ−1 : σ(U) −→ F1

is a section around σ(x). We wish to show first that Λ preserves the horizontal

distributions induced by the connections. Let α, α1 denote the connection 1-forms

on F and F1.

∇
Xx
s = s(s∗α)Xx

and

(σ · ∇)
Yσ(x)

s1 = s1(s
∗
1α1)Yσ(x)

= Λ ◦ s ◦ σ−1
σ(x)

[
(Λ ◦ s ◦ σ−1)∗α1

]
(Yσ(x))

= dσ s(s∗Λ∗α1) dσ−1(Yσ(x))

= dσ s(s∗Λ∗α1)(σ
−1 · Y )x.

On the other hand, since (σ−1 · s1)x = dσ−1(s1σ(x)) = sx, we have

(σ · ∇)
Yσ(x)

s1 = σ ·
(
∇σ−1·Y σ

−1 · s1

)
σ(x)

= dσ
(
∇(σ−1·Y )x s

)

= dσ s(s∗α)(σ−1 · Y )x.

Henceforth s∗Λ∗α1 = s∗α and we prove the claim that kerα1 = Λ∗ kerα taking

horizontal frames along paths in M passing through x (with vertical fundamental

vector fields one can actually see further that Λ∗α1 = α).

Finally let ζ : F → Z be the once introduced fibre bundle with bundle map

ζ(p) = pJ0p
−1,

where J0 is some positive compatible complex structure of V — cf. section 2.2,

formula (2.3). Clearly

Σ ◦ ζ(p) = dσ pJ0p
−1dσ−1 = ζ1 ◦ Λ(p)

and we know the ζ preserve the horizontal tangent bundles:

ζ∗ kerα = H∇, ζ1∗ kerα1 = Hσ·∇.

Now it is no longer difficult to see that Σ∗H∇ = Hσ·∇. �
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The reader may notice that all the constructions and results above are still valid

in the general twistor space J (M) case. Indeed, already the proof of theorem 2.5

did not mention any particular feature of symplectic manifolds.

Remark An application of the last theorem is the result at the end of section

2.3. The theorem confirms what one can effectively see by computations, i.e. that

the PDE system given there is preserved under the change of affine coordinates

in P 1(C). It also applys in the following strictly real situation: since (R2, ω) is

symplectomorphic to the hyperbolic disk (D, ω1), where

ω1 =
i

2

dz ∧ dz

(1 − |z|2)2
,

we can study J (D, ω1) using the theorem and example 1 in section 2.3 (it cor-

responds to find the Darboux coordinates in D and the respective connection’s

parameters).

There is a partial converse to the theorem, which is only valid in the symplectic

case. In the following we assume all the previous setting.

Corollary 3.1. Let ∇2 be any symplectic connection on M1 and suppose Σ :

(Z,J∇) → (Z1,J ∇2
) is holomorphic. Then

∇2 = σ · ∇

i.e. ∇2 is in the affine transformation orbit of ∇.

Proof. We have

J ∇2

= dΣ ◦ J∇ ◦ dΣ−1 = J σ·∇

so the result follows by theorem 2.4. �

We remark that the theorem has the apparent merit of transforming a 2nd order

PDE’s problem into a 1st order one.

One can ask which holomorphic maps Σ : Z → Z arise from a symplectomor-

phism on the base space M . In particular, referring to the problem raised in section

1.4, is there any flat symplectic connection in R2 for which the twistor space is not

biholomorphic to C ×D, like the one associated to ∇0 = d is?
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3.2 Kählerian twistor spaces

In order to introduce a new structure on the twistor space we need a further amount

of theory from [20]. Recall the exact sequence

0 −→ V −→ TJ (M,ω)
dπ−→ E −→ 0

where E = π∗TM . Also important to recall here is that, from section 2.2, we have

TJ (M,ω) = F sM ×U(n) n
J
⊕ R2n

with F sM the symplectic frame bundle, J some fixed element of J(R2n, ω, 0) =

Sp(2n,R)/U(n) and n
J

= {A ∈ sp(2n, ω) : AJ = −JA}.
Let ∇ be a symplectic linear connection on the given 2n-dimensional symplectic

manifold. Consider again the canonical section Φ ∈ Γ(J (M,ω); EndE) and the

projection P ∈ A1(V) with kernel H∇ induced by the connection, which via the

identity

Vj =
{
A ∈ sp(Ej, π

−1ω) : AΦj = −ΦjA
}
,

can also be seen as an endomorphism-valued 1-form on the twistor space. We can

define a new connection on E by

D = π∗∇− P,

which turns π∗∇Φ = [P,Φ] equivalent to

DΦ = 0.

It follows that D on EndE preserves V and hence DJ v = 0. Indeed, this connec-

tion is symplectic because its difference to an obviously symplectic connection π∗∇
stays within sp(E, π−1ω), and hence, as a derivation, acts trivially on the 2-form.

The isomorphism π∗ : H∇ → E allows us to transfer D, in order to give place

to a new connection D on H∇ satisfying

(DJ h)X = π−1
∗
(
D(π∗J hX)

)
− J hπ−1

∗ (Dπ∗X)

= π−1
∗ (DΦ)π∗X = 0.
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Henceforth we have defined a C-linear connection on TJ (M,ω) = V⊕H∇ preserv-

ing this splitting, exactly in the same lines of the general twistor theory. Since π∗

resulted in a parallel and C-linear isomorphism, one frequently identifies through-

out the text corresponding object and image in H∇ and E.

We need the following theorem from [20] valid in general in J (M) and which

we improved in a little detail. Thus we keep the notation referring to the symplecic

case and present our proof.

Theorem 3.2. The connection D on the tangent bundle of J (M,ω) has torsion

whose vertical part is the projection of

π∗R∇

into V, and whose horizontal part is

−P ∧ dπ.

(This part is π∗T∇ − P ∧ dπ in a more general setting.)

Proof. In the following we ask the reader to distinguish the Lie bracket from the

commutator bracket when appropriate. Since P and Φ are parallel,

[PTD(X, Y ),Φ] = [D
X
PY −D

Y
PX − P [X, Y ],Φ]

= D
X
[PY,Φ] −D

Y
[PX,Φ] − [P [X, Y ],Φ]

= π∗∇
X
π∗∇

Y
Φ − [PX, [PY,Φ]]

−π∗∇
Y
π∗∇

X
Φ + [PY, [PX,Φ]] − π∗∇

[X,Y ]
Φ

= [π∗R(π∗X, π∗Y ),Φ] − [[PX, PY ],Φ] .

Since ad Φ is injective on V and since [n
J
, n

J
] ⊂ gl(2n, J), cf. section 2.1, we may

conclude the vertical part of TD is just P (π∗R∇). The second part of the theorem

is just like in [20] and uses the same procedure so we end the proof here. �

The present section is devoted to the study of a natural symplectic structure

on J (M,ω), whose analogous construction in the riemannian version of the theory
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turned out to be already known — see [22]. To see which twistor spaces of that

kind over a 4-manifold admit a Kähler metric one might also want to have a look

at [15].

Recall that Sp(2n,R)/U(n) is a hermitian symmetric space, hence kählerian.

With the help of the Killing form and a Cartan’s decomposition of sp(2n,R) =

uJ ⊕ n
J

one defines a symplectic form on J (M,ω) by

Ω∇ = t π∗ω − τ,

where t ∈]0,+∞[ is fixed and

τ(X, Y ) =
1

2
Tr (PX)Φ(PY ).

The following has a trivial proof.

Lemma 3.2. Ω∇ is non-degenerate and J ∇ is compatible with it. The induced

metric is positive definite.

Although the parameter t will not teach us anything special about the twistor

space, besides that it could also give a pseudo-metric, we will keep it in sight since

it could become important at some moment.

Proposition 3.2. For any X, Y, Z ∈ TJ (M,ω)

dτ(X, Y, Z) = −1

4
Tr
(
Rπ∗∇
X,Y

◦ π∗∇
Z
Φ +Rπ∗∇

Y,Z
◦ π∗∇

X
Φ +Rπ∗∇

Z,X
◦ π∗∇

Y
Φ
)
.

Proof. Let us first see D is symplectic (though not torsion free). Since Dπ−1ω = 0

on E we are left to check Dτ = 0.

D
X
τ (Y, Z) = X(τ(Y, Z)) − τ(D

X
Y , Z) − τ(Y,D

X
Z)

= X(τ(Y, Z)) − 1
2
Tr (P (D

X
Y )ΦPZ + PY ΦP (D

X
Z))

= X(τ(Y, Z)) − 1
2
TrD

X
(PY ΦPZ)

= X(τ(Y, Z)) − d
(

1
2
Tr (PY ΦPZ)

)
(X) = 0

by lemma 1.2, where we have seen the vertical vector fields as elements of

A0(EndE). Now we use proposition 1.8 to find that

dτ(X, Y, Z) = d
(
Tr (τ 1

2
Id ∧ Id)

)
(X, Y, Z)

= τ(TD
X,Y

, Z) + τ(TD
Y,Z
, X) + τ(TD

Z,X
, Y ).
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Since

τ(TD
X,Y

, Z) =
1

4
Tr
(
[PTD

X,Y
,Φ]PZ

)

= −1

4
Tr
(
π∗R∇

π∗X,π∗Y
[PZ,Φ]

)

= −1

4
Tr
(
Rπ∗∇
X,Y

◦ π∗∇
Z
Φ
)

we are finished with the proof. �

Theorem 3.3. Ω∇ is closed if and only if ∇ is flat. In such case, J (M,ω) is a

Kähler manifold.

Proof. Since dπ∗ω = 0, we only have to do an analysis on dτ of four cases with

three horizontal or vertical tangent vectors X, Y, Z.

The only possible non-trivial case is say X, Y horizontal and Z vertical. Since

τ on V is non-degenerate, dτ(X, Y, Z) = τ(TD
X,Y

, Z) = 0 for all those X, Y, Z iff

P (TD) = 0. Equivalently, [π∗R∇,Φ] = 0, or

[R∇
x , j] = 0, ∀j ∈ π−1(x), x ∈M.

A bit of work with the matrices presented in proposition 2.3 yields R = 0. Not

happy with that, we found the following application of representation theory lead-

ing to the same conclusion. As before, for any compatible J with (R2n, ω), let uJ

be the unitary Lie algebra sp(2n,R) ∩ gl(2n, J). It is then trivial to see that

h =
⋂

J∈J(2n,ω,0)

uJ

is a Sp(2n, ω)-module under the action g · R = gRg−1. Because sp(2n, ω) is

irreducible, we have h = 0 and thus the ‘only if’ part of the theorem.

For the last conclusion we just recall that R∇ = 0 implies integrability of the

almost-complex structure J ∇ as well. �

Suppose the connection is flat. Then how come D is hermitian, the twistor

space is Kähler and TD is not 0? This ‘ill-posed question’ is immediately clarified
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by proposition 1.9, since P ∧ dπ is not type (2,0). As one may care to check, this

comes from the fact that P Φ = −ΦP .

Let 〈 , 〉 be the induced metric, so that

〈X, Y 〉 = t π∗ω(X,J∇Y ) +
1

2
Tr (PXPY )

and thus H∇ ⊥ V. Let ·v denote the vertical part of any tangent-valued tensor.

Theorem 3.4. (i) The Levi-Civita connection of 〈 , 〉 is given by

Dg
X
Y = D

X
Y − PY (π∗X) − 1

2
π∗R v

X,Y
+ S(X, Y )

where S is symmetric and defined both by

〈Sv(X, Y ), A〉 = 〈Aπ∗X, π∗Y 〉, ∀A ∈ V,

and

〈Sh(X,B), Y 〉 =
1

2
〈π∗R v

X,Y
, B〉, ∀Y ∈ H∇.

Hence for X, Y ∈ H∇ and A,B ∈ V we have

Sv(X,A) = Sv(A,B) = 0,

Sh(X, Y ) = Sh(A,B) = 0.

(ii) The fibres π−1(x), x ∈M , are totally-geodesic in J (M,ω).

(iii) If ∇ is flat, then DgJ ∇ = 0.

Proof. (i) Note that Sh is symmetric by definition and that, to see Sv is symmetric,

we just have to check every A ∈ V is self-adjoint:

〈Aπ∗X, π∗Y 〉 = t ω(Aπ∗X,Φπ∗Y )

= t ω(π∗X,ΦAπ∗Y ) = 〈π∗X,Aπ∗Y 〉.
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Now let us see the torsion condition:

TD
g

(X, Y ) = TD(X, Y ) − PY (π∗X) − 1

2
π∗R v

X,Y
+ S(X, Y )

+PX(π∗Y ) +
1

2
π∗R v

Y,X
− S(Y,X)

= TD(X, Y ) + P ∧ dπ(X, Y ) − π∗R v
X,Y

= 0.

For the metric condition it is easier to let, from now on, X, Y, Z denote horizontal

and A,B,C vertical tangent vectors. We already know D is hermitian, so to

simplify computations let ξ = Dg −D. Then

ξ
X
Y = −1

2
π∗R v

X,Y
+ Sv(X, Y ), ξ

X
A = −AX + Sh(X,A),

ξ
A
X = Sh(X,A), ξ

A
B = 0

and thus in particular, from the last formula, we deduce (ii). Now

Dg
X
〈 , 〉(Y, Z) = −〈ξ

X
Y, Z〉 − 〈Y, ξ

X
Z〉 = 0,

Dg
X
〈 , 〉(Y,A) = −〈ξ

X
Y,A〉 − 〈Y, ξ

X
A〉

=
1

2
〈π∗R v

X,Y
, A〉 − 〈Sv(X, Y ), A〉

+〈Y,AX〉 − 〈Y, Sh(X,A)〉 = 0,

−Dg
X
〈 , 〉(A,B) = 〈ξ

X
A,B〉 + 〈A, ξ

X
B〉 = 0,

−Dg
A
〈 , 〉(X, Y ) = 〈Sh(X,A), Y 〉 + 〈X,Sh(Y,A)〉

=
1

2
〈π∗R v

X,Y
, A〉 +

1

2
〈π∗R v

Y,X
, A〉 = 0,

−Dg
A
〈 , 〉(X,B) = 〈ξ

A
X,B〉 + 〈X, ξ

A
B〉 = 0,

and finally

−Dg
A
〈 , 〉(B,C) = 0.

(iii) Of course we know this immediately from theorems 1.3 and 3.3. But we would

like to confirm: if ∇ is flat then Sh = 0 too. Hence for all vector fields

Dg
X
J ∇Y = J ∇D

X
Y − J ∇PY (π∗X) + Sv(X,J∇Y ).

However, 〈Sv(X,J ∇Y ), A〉 = 〈J∇Sv(X, Y ), A〉 is an easy computation and valid

in general, so we are finished. �
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Notice that the proof of (iii) shows the coherence of our results with the well

known theory of the second fundamental form in Kähler geometry. Furthermore,

one can write more explicitly

Svj (X, Y ) = − t

2

{
ω(X, )jY + ω(jY, )X + ω(jX, )Y + ω(Y, )jX

}

and also construct a symplectic-orthonormal basis of V induced by a given such

basis on H∇.

An interesting question still remains: assuming ∇ is complete, is the same true

for Dg?

Next we present some of the results we have found about the kählerian twistor

space J (M,ω). Since they are not used anymore we do not show their long proofs.

Untill the end of the section assume R∇ = 0.

Theorem 3.5. Let Π be a 2-plane in TjJ (M,ω) spanned by the orthonormal basis

{X + A, Y +B}, X, Y ∈ H∇, A,B ∈ V. Then the sectional curvature of Π is

kj(Π) = −〈RDg(X + A, Y +B)(X + A), Y +B〉

=
t2

2

(
‖X‖2

1‖Y ‖2
1 + 3ω(X, Y )2 − 〈X, Y 〉21

)

−t‖BX − AY ‖2
1 − 2t〈[B,A]X, Y 〉1 − ‖[B,A]‖2

where 〈 , 〉1 = ω( , j ), the case t = 1, and [ , ] is the commutator. Thus

kj(Π)

{
> 0 for Π ⊂ H∇

< 0 for Π ⊂ V.

We remark that the second part of the theorem can also be obtained from Gauss’s

equations. First the reader may recall from the theory in section 1.2 that the

horizontal distribution is integrable when ∇ is flat (cf. section 3.5). Then, the

horizontal leaves are quite immediately seen to have π∗∇ for Levi-Civita connection
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with the induced metric, and hence to be flat. Finally, for X, Y horizontal and

orthonormal, the formula of Gauss says

kj{X, Y } = ‖S(X, Y )‖2 − 〈S(X,X), S(Y, Y )〉

= 〈S(X, Y )X, Y 〉 − 〈S(X,X)Y, Y 〉 = etc

and the claim follows by Cauchy’s inequality. For the totally geodesic fibres of

J (M,ω) we recall that −‖[B,A]‖2 is the sectional curvature of the hyperbolic

space Sp(2n,R)/U(n).

As suggested by theorem 3.4 one can try to find the Cauchy-Riemann operator

on the tangent bundle of J (M,ω). We will proceed to do this in the kählerian

case, hoping to make some starting point on the understanding of the former.

Proposition 3.3. (i) A vector field Y ∈ XJ (M,ω)
is holomorphic iff

D
X
Y + J ∇D

J∇X
Y − 2(PY )π∗X = 0, ∀X.

(ii) H∇ is a holomorphic subvector bundle of TJ (M,ω).

(iii) RD is a (1,1)-form.

Proof. (i) From the theory in section 1.3, ∂T = ′′ ◦Dg. Hence

∂
X+iJ∇X

(Y − iJ ∇Y ) = Dg
X
Y +Dg

J∇X
J ∇Y + i

(
Dg

J∇X
Y − J ∇Dg

X
Y
)

= Dg
X
Y + J ∇Dg

J∇X
Y − iJ ∇

(
Dg
X
Y + J ∇Dg

J∇X
Y
)
.

Therefore ∂ operates as the real part of the above, which is equal to

D
X
Y − (PY )π∗X + S(X, Y ) + J ∇D

J∇X
Y

−J ∇(PY )π∗J ∇X + J ∇S(J ∇X, Y )

= D
X
Y + J ∇D

J∇X
Y − 2(PY )π∗X.

(ii) There is an easy way to justify this. We have seen D is a hermitian connection

on H∇ ≃ E. From the formula above we immediately find that D determines
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a ∂-operator on E coinciding with ∂T , hence integrable. By Koszul-Malgrange’s

theorem, theorem 1.2 in this work, (iii) follows: RD must not have (0,2)-part.

(iii) This actually ‘appeared’ before (ii) and implies (ii), since we computed (see

section 3.4, proof of corollary 3.2)

RD
X,Y = −[PX, PY ].

Then recall a result from section 2.1 which says [n+
J
, n+

J
] = 0. �

Notice V ⊂ EndE also inherits an (integrable) almost-complex structure as vector

bundle by Koszul-Malgrange’s result. However, this has nothing to do with Dg or

J ∇.

In conclusion, the kählerian twistor space, i.e. with the metric 〈 , 〉 and the

hypothesis R∇ = 0, has holomorphic charts in Cn × C
1
2
n(n+1) like

H ×W or U × V

with H×{w} horizontal and {x}×V vertical, but never a chart of the kind H×V .

This is not new, it agrees with example 4 in section 2.4.

3.3 Holomorphic completeness and the Penrose

transform

We have made an attempt to define a Penrose transform on the twistor space of

a symplectic manifold. In the following considerations we just present a possible

complex-differential geometric point of view. Let us start by recalling some basic

results about manifolds like J (M,ω) = Z (we use this notation for the moment).



3.3 Holomorphic completeness and the Penrose transform 88

In a few occasions before, we have mentioned the existence of smooth sections

of our fibre bundle over M . A theorem of N. Steenrod and others in the C0-

paracompact category assures that it is possible to construct global C0-sections

on a bundle with fibre a cell. Furthermore, there exist global extensions of any

prescribed section over a closed set which extends to a neighborhood of this set

(cf. [14]).

The above was homotopy theory — to find the smooth section of Z one must

use some algebraic techniques (see [18]). In either way we conclude

Hp(Z,R) = Hp(M,R)

and thus the vanishing of cohomology for a large number of p’s. The reader may

actually see an explicit map in section 3.4 from which to derive a strong deformation

retract from Z onto a “0” section. There, we shall continue our (real) de Rham

cohomology study.

The previous result, the vanishing of cohomology, has a further resemblance

to a completely analogous claim in a completely holomorphic setting. The reader

may deduce why in between the lines of what follows.

Let Z be a complex manifold of dimension m. Recall that Z is said to

be strongly q-pseudoconvex if it admits a smooth exhaustion function which is

strongly q-pseudoconvex outside of a compact subset, i.e. there exists φ : Z → R

of class C∞ such that

L(φ) : TZ ⊗ TZ −→ R

has at least m− q+ 1 positive eigenvalues in the complement of a compact subset

C, and the level sets {x ∈ Z : φ(x) < c}, c ∈ R, are relatively compact in Z.

When the set C is empty one says that N is q-complete. Recall that the Levi form

L(φ) = 4
∑

i,j

∂2φ

∂zi∂zj
dzi ⊗ dzj
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is a hermitian 2-tensor, independent of choice of the chart (z1, . . . , zm) of Z. From

the definition we have that q-completeness implies q + 1-completeness. One also

gives the name Stein to 1-complete manifolds.

Now we need the following theorem of H. Wu. A good reference for the proof,

which we omit, is [27].

Theorem 3.6. A simply connected complete Kähler manifold X of everywhere

nonpositive sectional curvature is a Stein manifold.

The proof contains the following arguments. Let φ : X → R be the riemannian

distance function from a fixed point p ∈ X. Then it is proved that φ2 is smooth

and strictly plurisubharmonic. It is an exhaustion function due to completeness of

the metric: a bounded and closed set is compact.

Remark. Besides Cn, the canonical example to which Wu’s theorem applies is the

Siegel domain J(R2n, ω, 0). For example, in the 1-disk every point z has distance

to the origin

log
1 + |z|
1 − |z| .

Hence the square of the distance function in Sp(2n,R)/U(n) with invariant hy-

perbolic metric is C∞. Also we remark that the same result does not apply to all

components of J(2n, ω, ∗), as their natural metrics may be indefinite. Yet they are

Stein spaces as we proved in section 2.1.

Now let (M,ω,∇) be a symplectic manifold of dimension 2n with a symplectic

connection of Ricci type, i.e. the Weyl part of the curvature tensor vanishes.

Consider the twistor space J (M,ω), a complex manifold of dimension n+k where

k = n(n + 1)/2 = dim Siegel domain. As usual, let J ∇ denote the complex

structure and π the projection to M .

Lemma 3.3. Let D be a domain in Cm and X a regular complex analytic subspace.
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If φ ∈ C2
D then

L(φ)|TX⊗TX = L(φ|X).

Proof. We know that for every z ∈ X there is a chart (z1, . . . , zm) in a neighborhood

U of z such that X ∩U = {z ∈ U : zk+1 = . . . = zm = 0}. Since Tz(X ∩U) = {u ∈
TzU : dzi(u) = 0, i > k} we find the result just by looking at the definition of the

Levi form. �

As we said, M always admits a smooth and compatible almost-complex struc-

ture J , so we define a smooth function h on J (M,ω) to be the square of the

distance in each fibre to the section J — which we know to arise from a smooth

riemannian metric on the vertical bundle ker dπ.

Theorem 3.7. If M has a smooth exhaustion function φ, then J (M,ω) is

n+ 1-complete.

Proof. Let

ψ = h+ φ ◦ π.

It is a smooth and exhaustion function. To prove this notice that h is positive

so the closed level sets of ψ are inside the closed level sets of φ ◦ π for the same

constant c. These project onto a compact subset Kc of M . Then we have that

{j ∈ J (M,ω) : ψ(j) ≤ c} ⊂
{
j ∈ π−1(Kc) : ψ(j) ≤ c

}

⊂
{
j ∈ π−1(Kc) : h(j) ≤ c+ sup

Kc

|φ|
}

and, since the biggest set is compact, the closed level sets of ψ are compact.

Now, for any x ∈ M , we apply the lemma to the complex submanifold π−1(x)

and use the previous theorem to find that L(ψ|π−1(x)) = L(h|π−1(x)) has k positive

eigenvalues. Since L(ψ) is hermitian symmetric, there is an orthogonal complement

for ker dπ and we may conclude that L(ψ) has at least k positive eigenvalues. Hence

J (M,ω) is q-complete, where q is such that n+ k − q + 1 = k. �

Example 1. If M is compact we may take φ = 0 in the theorem above. In

particular, J (P n(C), ω) is n+ 1-complete (and not less, see below).
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Example 2. If M has some riemannian structure for which there is a pole, i.e.

there exists x0 ∈ M such that exp : Tx0M →M is a diffeomorphism, then we may

take φ = ‖ exp−1 ‖2.

Example 3. Let M = Bǫ(0), the open ball of radius ǫ in (R2n, ω0). For this case

we found φ(x) = − log(ǫ2 − ‖x‖2), which is the famous function of K. Oka.

One must realise now that the difficult thing is to find completeness below n + 1.

This will certainly involve the horizontal part of J ∇, which so much characterises

twistor spaces.

Remark. In general, it is impossible to find a better result than that of the

theorem: we know the Levi-Civita connection of P n(C) is of Ricci type and we

have seen that parallel complex structures embed holomorphically into the twistor

space. On the other hand it is well known that a q-complete space does not have

n-dimensional compact analytic submanifolds, for any n ≥ q.

By the same token, the kählerian twistor space J (T2n, ω) is just holomorphi-

cally n+ 1-complete.

However, with some restriction, it may well happen that it is possible to carry

on. So far, the only indication we have of this is example 2 in the examples section

combined with theorem 3.1: as we remarked there, the twistor space of R2 with

trivial connection ∇0, and hence with all σ · ∇0, is 1-complete or Stein.

In a parallelism with what was done in [2, 12, 21] in the celebrated riemannian

case of P 3(C) → S4 we finally arrive to a point where, shortly, we define “Penrose

transform” to be the direct image of any complex analytic sheaf over twistor space

onto the base space. Thus a functor O → C∞.

Theorem 3.8. Let (M,ω,∇) be as above and F a coherent analytic sheaf over

J (M,ω). Then

Rqπ∗F = 0, ∀q ≥ n+ 1.
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Proof. Recall Rqπ∗F is the sheaf associated to the presheaf U 7→ Hq(π−1U,F).

Hence the stalk at x ∈M is

lim
U∋x

ind Hq(π−1U,F).

Now, for a sufficiently small neighborhood U of x, there is a chart σ : U → B ⊂ R2n

such that σ∗ω0 = ω and σ(x) = 0. Since we have a theorem saying there is a

biholomorphism

Σ : (J (U, ω),J∇) −→ (J (B, ω0),J σ·∇),

we may suppose our base space is B and the coherent analytic sheaf is Σ∗F .

Finally, the {Bǫ(0)}
ǫ>0 form a basis for the neighborhoods of 0 and, by example

3 above, all J (Bǫ, ω0) = π−1(Bǫ) are n+1-complete. By definition of inductive limit

we find that (Rqπ∗F)x = 0, ∀q ≥ n + 1, appealing to Andreotti-Grauert’s “t. de

finitude pour la cohomologie des espaces complexes” (cf. [1]). �

Although we know Hq(π−1(x), ι∗F) = 0, ∀q ≥ 1, where ι is the inclusion map,

one has to notice in the above proof that the {π−1(U)} do not form a basis of

the neighborhoods of π−1(x), as they always do in the riemannian case (the fibre

is compact). Another remark is that one could have used any metric on a neigh-

borhood of x ∈ M instead of appealing to the theorems of Darboux and the one

specific to twistor spaces.

3.4 Further results

We show here some further results or remarks of various kinds on the twistor

space of a symplectic manifold. They could have been easily dispersed along the
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previous sections, but then they would not add much more insight and would not

call attention to possible new directions of study.

Let us continue the remarks of the last section on cohomology with constant

coefficients. Again let Z = J (M,ω). Since Z has an almost complex structure, it

is an orientable manifold. So Poincaré-duality together with contractibility yields

Hp
c (Z) ≃

(
H2n+2k−p(Z)

)∗

≃ Hp−2k
c (M)

(3.1)

where 2k = n(n + 1) is the fibre dimension. Along with this isomorphism we can

also consider a cohomology with vertical compact support in the sense of R. Bott

and L. Tu (see [5]). This was done for vector bundles, so now is the time to recall a

known map — to which we had already alluded in section 3.3. Let J0 ∈ Γ(M ;Z).

Proposition 3.4. Let B(n) = {S ∈ sp(TM, ω) : ‖S‖ < 1, J0S = −SJ0}. Then

the map

f : Z −→ B(n)

J 7−→ (J + J0)
−1(J − J0)

is a well defined diffeomorphism.

Note ‖S‖ is the max-norm on operators induced by the metric g
J0

. The proof of

the proposition, though in another context, can be found as an exercise in [4].

Henceforth Z sits as an open set in a vector bundle — it simply does not have

a preferred zero section — and thus we may define

π∗ : Hp
cv(Z) −→ Hp−2k(M)

by integration along the fibre of the closed p-forms which have compact support

along each fibre on the components whose vertical part is top degree 2k, the cv-

forms, and by 0 in any other case. In [5] it is proved independence of chart and class,

and that d π∗ = π∗ d. The only necessary condition to do such a fibre-integration, as

one may easily guess why, is that Z must be an oriented fibre bundle. By ‘oriented

fibre bundle’ we mean there exists a collection of trivializations of the bundle with
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all transition functions preserving the orientation of a standard orientable fibre.But

this is true for every P ×G Y where Y is a G-space, P is an oriented principal G-

bundle and G is connected. The proof is straightforward and fails if G is not

connected as the case of S1 ×{0,1} R → S1 will show.

In our case, P is the obviously oriented bundle of symplectic frames and Y =

J(2n, ω, 0). By a theorem of [5] on the oriented vector bundle case we may conclude

Hp
cv(Z) ≃ Hp−2k(M),

a Thom isomorphism which agrees with (3.1) if M is compact. (A marginal ques-

tion for us still holds: since Z oriented bundle implies Z orientable manifold, are

there counter examples for the converse, assuming already the fibre and base space

are orientable?)

One could also try to see what is L2-cohomology (or intersection cohomology?)

over Z with values on a vector bundle. In particular, the latter could be assumed to

be a homogeneous Gx = Sp(TxM,ωx)-vector bundle along each fibre, i.e. E → Z

such that

E| π−1(x) =
π−1(x) × Ex

∼
=

{
(j, e) ∼ (gjg−1, g · e) : g ∈ Gx

}

and where Ex is an irreducible Gx-module. There are sophisticated results due to

A. Borel to apply on H i
(2)(π

−1(x), E|). From this it would follow, for instance, the

study of Gx-invariant forms on Z.

Turning now to the holomorphic structure J ∇ induced on Z by a Ricci type

symplectic connection on M , there should exist some criteria to determine when

is π∗F a holomorphic vector bundle, where π∗F is sitting in

π∗F −→ F

↓ ↓
Z

π−→ M,



3.4 Further results 95

and F is a given vector bundle. This was done for the 4-dimensional riemannian

case in [3]. Notice π∗F agrees with the above construction, with trivial Gx action

on each Fx, x ∈ M . Other questions follow: which operator does the Cauchy-

Riemann on π∗F induce on F and, starting with a holomorphic vector bundle

E → Z, which Rqπ∗O(E) induce a vector bundle on M?

Now, notice the bundle B(n) in proposition 3.4 is associated to the principal

U(n)-bundle of unitary frames, so it is particularly suitable for the study of the

‘symplectic’ twistor space of a Kähler manifold. Indeed, as it was explained after

theorem 2.2, B(n) carries a twistor almost-complex structure if ∇J0 = 0, i.e. ∇ is

symplectic and complex linear. In this case the map f in proposition 3.4 becomes

holomorphic.

Until the end of this section assume (M,ω, J0) is a Riemann surface, and let h

denote the correspondent hermitian structure on T ′M under the C-isomorphism

J+
0 : TM → T ′M .

Proposition 3.5. J (M,ω) = B1(T
′M ⊗c T

′M) up to diffeomorphism, and where

B1 represents the radius 1 disc bundle.

Proof. Note first that if S ∈ n = {S ∈ EndTM : SJ0 = −J0S}, then

TrS = Tr J−1
0 SJ0

= −Tr J0SJ0 = −TrS,

and so S ∈ sl(TM) = sp(TM, ω). Hence

n = Endc T
′M = T ′M ⊗c T

′M.

Moreover, the isomorphisms resume to S = u h(v, ) = u⊗ v and

‖S‖ = sup
|U |=1

|SU |

= sup |h(v, )||u| ≤ |u||v|.

Taking U = v/|v|, we find ‖S‖ = |u||v|. Now compare with proposition 3.4. �
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(Is there a relation here to the quadratic differentials of Teichmüller’s space?)

As the reader knows there are various ways to describe the Siegel domain.

Hence the result above and the one that follows. Let M be connected, orientable

and compact. Recall that the Euler characteristic is equal to 2 − 2g where g is

the genus of M . Recall also that we have seen a way in which to embed J (M,ω)

in P 1(TM ⊗ C) = Gr(M), at least fiberwise (cf. section 2.1, proposition 2.4).

Because Gr(M) is associated to an even Euler number principal U(1)-bundle, we

may use a result from [18] on the classification of sphere bundles over Riemann

surfaces, to conclude that Gr(M) is diffeomorphic to the trivial bundle M × S2.

In other words, M is parametrizing a disc ‘flowing’ inside S2, the twistor’s fibres,

with boundary the principal bundle of unitary frames.

A last corollary to theorem 3.2 on honest twistor theory follows.

Corollary 3.2. If M is a Riemann surface, then H∇ and V are holomorphic line

bundles over J (M,ω).

Proof. Let D = π∗∇−P be the connection defined in section 3.2, which is induced

by the Levi-Civita connection ∇ of M . First we compute in any dimension

dπ
∗∇P (X, Y ) = π∗∇

X
(PY ) − π∗∇

Y
(PX) − P [X, Y ]

= π∗∇
X
PY − π∗∇

Y
PX + P

(
TD(X, Y ) −D

X
Y +D

Y
X
)

= π∗∇
X
PY − π∗∇

Y
PX + P (π∗R∇

X,Y
)

−π∗∇
X
PY + [PX, PY ] + π∗∇

Y
PX − [PY, PX]

= P (π∗R
X,Y

) + 2[PX, PY ].

Hence, from the proof of proposition 1.4, we have that

RD = Rπ∗∇ − dπ
∗∇P + P ∧ P

= π∗R− P (π∗R) − P ∧ P.
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Now, recall the twistor space is always a complex 2-manifold and D is a C-linear

connection. Moreover, in dimension n = 1 we also have that R∇ is proportional to

ω and so it is type (1,1) for all j in any fibre of the twistor space — an assertion

equivalent to π∗R being (1,1) for J ∇. On the other hand, P (J∇+
X) = Φ+P (X)

so, recalling the computation from section 2.1 which showed [n+
J
, n+

J
] = 0, we may

conclude RD is type (1,1). The result now follows by the theorem of Koszul-

Malgrange in section 1.3. �

Notice we do not say those vector bundles are holomorphic subvector bundles of

TJ (M,ω).

Finally, after assigning a metric to any real surface, all previous constructions

follow and we are left with a new tool in the theory of Riemann surfaces: letting

F denote one of the sheaves of germs of holomorphic sections of H∇ or V, then

R1π∗F

may tell us something new about M .

3.5 A simple generalisation

Let us see a generalisation of those results introduced in [20], which were presented

in section 2.2 and had in view the real differential geometry of twistor spaces.

Assume V0 is a vector space, G ⊂ GL(V0) is a Lie group and g is its Lie algebra.

Let Y ⊂ EndV0 be a symmetric G-space and assume Y is realised as

G

H
= G · y0
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for some fixed element y0, where · denotes the adjoint action. Let h denote the Lie

algebra of the stabiliser subgroup H of y0, so that G→ Y is a principal H-bundle.

We also have that

TY = G×H m

where m is such that m + h is a symmetric space decomposition of g. It is known

that h = ker ad (y0) and

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h. (3.2)

Here we assume the further identity m = [g, y0].

Remark. The last assumption is always satisfied if G is compact (cf. [22]).

Indeed, with a G-invariant metric, we have ker ad(y0) ⊥ im ad(y0). But the case

of J(V, ω, 0) proves the condition to represent a more general situation. Notice for

future reference that, also from [22], we learn that if G is compact then Y has a

complex G-structure: again, ad(y0) is skew symmetric, so m+ is the sum of the

eigenspaces whose eigenvalue is above the real axis.

Let F be a principal G-bundle over a real manifold M . Then we have a com-

mutative diagram of fibre bundles

F
π1−→ Z = F ×G Y

π0 ց ւ π

M

where two of them are principal and where π1(p) = p · y0.

As we mentioned in the beginning of section 1.2, if α is a connection on F , then

there is a horizontal distribution tangent to Z: it is defined as H∇ = π1∗ kerα. By

general principles, it is smooth and hence it underlies some vector bundle. Now, let

α be given and let ∇ denote the associated covariant derivative on V = F ×GV0 →
M .

Proposition 3.6. The structure group of the vector bundle π∗V → Z reduces to

F
π1−→ Z, so we may write π∗V = F×H V0 with V0 as a H-module. Hence, End π∗V

admits a global section defined by Φp·y0 = p · y0, which is said canonical. Moreover,

H∇ =
{
X ∈ TZ : π∗∇

X
Φ = 0

}
.
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Proof. We start by showing that (F, π1, Z) is a reduction of π∗F → Z. We have

F
r−→ π∗F =

{
(z, p) : π(z) = π0(p)

}

↓ ւ
Z

where r = (π1, Id) is an embedding and r(pg) = r(p)g = (z, pg), for all g ∈ H .

Hence the first part.

The connection π∗∇ also reduces to F — though, here, as a H-connection with

1-form the very same α = (pr2 ◦ r)∗α. Now, let s denote any section of P over

some open subset of Z. The duality π1 ◦ s(z) = z = s(z) · y0 yields

π∗∇
X
Φ = (π∗∇)

X
s · y0 = s · [s∗α(X), y0]

by formula (1.5) and the starting observations in section 1.2. Hence

X ∈ ker π∗∇·Φ ⇐⇒ [α(s∗X), y0] = 0

⇐⇒ α(s∗X) ∈ h

⇐⇒ s∗X ∈ ker α + ker π1∗

⇐⇒ X = π1∗s∗X ∈ H∇ = π1∗ kerα

(notice kerα is the kernel corresponding to ∇). �

The proof clearly follows that of proposition 2.5. Moreover,

TZ = H∇ ⊕ V (3.3)

where V = ker dπ, and with both vector bundles sitting in

0 −→ V −→ TZ
dπ−→ π∗TM −→ 0.

Furthermore, we can also see that V = F ×H m, so it identifies with a subvector

bundle of End π∗V .

Now assume Y to be a complex G-symmetric space (cf. with the remark above),

so that such structure is carried over to the bundle’s fibres, and let M have an

integrable complex structure J . Then we can use the isomorphism dπ : H∇ →
π∗TM and transport π∗J to a complex structure J h on the horizontal distribution.
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Like in twistor theory, the kählerian complex structure of Y is carried fiberwise to

a smooth endomorphism of V with square −1, which we denote by J v. Finally,

we may define an almost-complex structure over the manifold Z:

J ∇
3 = (J h,J v)

preserving the splitting (3.3). In this case, π is always pseudo-holomorphic; there

is no ‘twisting’ here.

Just like in twistor theory and because m admits a fixed complex structure, we

deduce the following result. Let ρm+ denote the component in m+ of the curvature

2-form ρ over the principal bundle F .

Theorem 3.9. The integrability equation of J ∇
3 is equivalent to

ρm+(u, v) = 0

for all u, v ∈ TF ⊗ C whose image under dπ0 is in T−M .

Proof. The pull-backs to F of (1,0)-forms on Z are spanned by the components of

dπ0, that is up to a chart of M , and the components of αm+ . Then

dαm+ = (dα)m+ = ρm+ − (α ∧ α)m+

= ρm+ + (2, 0), (1, 1)− forms,

as the equations (3.2), [m+,m+] ⊂ m+ and the decomposition α = αm+ +αm− +αh

will easily show. Finally, recalling that J ∇
3 is integrable iff the exterior derivatives

of (1,0)-forms do not have (0,2)-component and recalling ρ vanishes on vertical

tangent vectors, we may conclude. �

Example. Let M be a complex manifold and V → M any (oriented) vector

bundle of rank 2k. Suppose V is endowed with a metric g and a respective metric

connection ∇. Then we may consider the bundle

J(+)(V, g),

of all the g-compatible, (orientation preserving) complex structures of V , together

with its a.c. structure J ∇
3 . The integrability condition is thus given by the new
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equation

I+R(J−X, J−Y )I− = 0,

for all X, Y ∈ TM and all I ∈ J(+)(V, g). Notice that, if we assume V → M is

a holomorphic vector bundle, then the embedding J(+)(V, g) ⊂ End V is certainly

not holomorphic.

Continuing our generalisation of results from [20] or section 2.2, and following

formula (3.3), we again assume the conjugacy class Y is just a real symmetric

space and m = [g, y0]. Now we let P : TZ → V denote the projection map with

kernel the horizontal distribution. P ∈ A1(V), so it may be used to translate π∗∇
to a new connection

D1 = π∗∇− P,

verifying D1Φ = π∗∇Φ − [P,Φ] = 0 and thus

D1
X
V = D1

X
[Φ,End π∗V ]

= [Φ, D1
X
End π∗V ] ⊂ V.

Now assume we are given a linear connection ∇M , that is, on the tangent

bundle of M . Using the isomorphism H∇ dπ−→ π∗TM we may transport π∗∇M to

another connection D2 on H∇. Then

D = D2 ⊕D1

is a linear connection over Z, preserving the splitting (3.3). Notice here a diver-

gence from the theory in section 2.2: there is no −P in the horizontal side.

Proposition 3.7. The connection D has torsion whose vertical part is the projec-

tion of π∗R∇ into V, and whose horizontal part is π∗T∇M .

Proof. This is exactly as in the proof of theorem 3.2. For the vertical part, though

in a general setting, the same arguments carry through. For the horizontal, and
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since we did not show the second part of that theorem’s proof, which is found in

[20], we do the proof here up to the remarked minor difference. Let X, Y ∈ TZ.

Then

dπ(TD(X, Y )) = π∗∇M
X

dπY − π∗∇M
Y

dπX − dπ[X, Y ]

= π∗T∇M (dπX, dπY )

since we notice this is a tensor. �

Using Frobenius’ theorem, the following is now easy to prove.

Proposition 3.8. The distribution H∇ is integrable if and only if [π∗R∇,Φ] = 0.

We remark that, as we saw in the twistor theory case, a section ψ : M → Z is

parallel if and only if ψ∗TM ⊂ H∇. Indeed, this is now trivial to check:

ψ∗(π∗∇
ψ∗XΦ) = (j∗π∗∇)

X
ψ∗Φ

= ∇
X
ψ

since π ◦ ψ = Id and ψ∗Φ = ψ.

Finally we present the example of a symplectic connection which is not locally

Kähler — a notion introduced just before proposition 3.1. This can be put in

contact with the above by taking the case of the twistor space J (M,ω, ∗) and

proving that the horizontal distribution does not admit one single leaf.

In the real functions a, b, c, d ∈ C∞
R2 of section 1.4, which determine uniquely

any symplectic connection on R2, we choose a = b = d = 0 and c = 1. So

∇
∂x
∂x = 0, ∇

∂x
∂y = ∇

∂y
∂x = ∂x, ∇

∂y
∂y = −∂y

Then

R(∂x, ∂y)∂x =
(
∇

∂x
∇

∂y
−∇

∂y
∇

∂x

)
∂x = 0
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and

R(∂x, ∂y)∂y =
(
∇

∂x
∇

∂y
−∇

∂y
∇

∂x

)
∂y = −2∂x.

R∂x,∂y is a nilpotent endomorphism, so it cannot be taking values on so(2) as it

should if the connection ∇ were reducible.



Appendix A

Here is the proof of proposition 2.2, section 2.1, which does not recur to V c. Recall

also the remark on the sign rule just before that proposition.

Proof. (i) Everything amounts to show that it is possible to find a basis both

symplectic and g
J
-orthogonal. Recall that a basis {Xm} is called symplectic if the

matrix of ω is

J0 =


 0 −1

1 0


 ,

so that Xm+n = J0Xm for m ≤ n and J0 is a complex structure.

Let X, Y ∈ V \{0} be such that ω(X, Y ) = ±1 (there exists such a pair). Now,

with the restriction of the non-degenerate ω,

V1 =
{
U : ω(X,U) = ω(Y, U) = 0

}
= {X, Y }ω

is a symplectic vector space. Admitting by induction the result true for n − 1,

we find the new basis on V1 and a complex structure on V1. Rearranging terms

together with X = −JY and Y = JX we find the full basis we required, the index

remaining a combinatorial problem. Also V1 becomes the orthogonal complement

of {X, Y }. In the meanwhile, we proved the existence of symplectic bases and the

existence of compatible complex structures for any l.

(ii) Now let J be given and let

Ql =


 1n−l,l

1n−l,l




where 1n−l,l is the matrix of the inner product x1y1 + ... + x
n−lyn−l−xn−l+1

y
n−l+1

− ... − x
n
y
n
. So far we have proved there exists g ∈ Sp(V, ω) which transforms,

104
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say, the first symplectic basis {Xm} to a new one both orthogonal and symplectic.

Henceforth g satisfies the equations

gtJ0g = J0 and − gtJ0Jg = Ql.

Thus gtJ0 = J0g
−1, and hence g−1Jg = J0Ql. It is trivial to see J0 commutes with

Ql, so we got a complex structure J0Ql in the same J(V, ω, l) as J . �

Notice that the proof above to find symplectic bases works just fine in order to

find the same in a completely C-framework.

In the following we shall take care of the statements at the end of section 2.1

which were left to prove. To simplify notation let V = R2n so that Sp(V c, ω) =

Sp(2n,C) = GC . Now, GC acts holomorphically on the grassmannians Gr(k, 2n)

of complex k-planes (not transitively). Notice that the stabilizer P
Π

of a point Π

is clearly a complex subgroup.

We are particularly interested in the case k = n. A quick computation shows

that this P is neither the smallest nor the biggest subgroup we can achieve with

those actions (is the smallest subgroup the case when k = [n/2] odd?). However,

our P is still big enough for the maximal solvable subalgebra r in the Lie algebra

p of P to be maximal solvable in sp(2n,C) = gC .

Proof. Just from the theory of solvable Lie algebras on algebraically closed fields,

which we are not able to recall here exhaustively, one concludes all solvable s

preserve some n-plane (thinking of s ⊂ gl(C2n), its elements are all representable

in triangular form for a same basis). So any maximal s ⊂ gC will preserve some

n-plane. By conjugation with some g ∈ GL(2n,C) we find sg ⊂ p and sg = r to

be maximal in gC . To see that inclusion, notice the subgroup P coincides with the

stabilizer of the r-stable n-plane. �
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P is thus a parabolic subgroup, and has the ‘right’ dimension. After finding

this dimension, the reader may notice that all conclusions we draw next will remain

true without referring to flag manifolds’ theory. Though, the latter came first to

our knowledge than the former.

We need to be more practical to see that dimension. Consider the plane Π =

{(x, 0) : x ∈ Cn}. Then

P =






 a ae

0 a−1t


 : a ∈ GL(n,C), e = et ∈ gl(n,C)





= GL(n,C) ⋊ C
n(n+1)

2 .

Proof. Let g ∈ P .

g


 x

0


 =


 a b

c d




 x

0


 =


 ∗

0




implies c = 0. Also g ∈ GC , so

 at 0

bt dt




 0 −1

1 0




 a b

0 d


 =


 0 −at

dt −bt




 a b

0 d


 =


 0 −1

1 0




and we find d = a−1t, dtb = btd. Equivalently, d = a−1t and b = ae with et = e. �

(One may guess that the radical of P is a Borel subalgebra of sp(2n,C)).

Now we take a digression on the real forms of GC , some of which we do not

need. First we see

P ∩ U(2n− 2l, 2l) = U(n− l, l).

Proof.

 at 0

(ae)t a−1


Ql


 a ae

0 a−1t


 =


 at1n−l,la at1n−l,lae

(ae)t1n−l,la ∗


 = Ql

iff a ∈ U(n− l, l), e = 0. �

Since GC/P is connected, arguing with dimensions we find

GC ∩ U(2n− 2l, 2l)

U(n− l, l)
⊂ GC

P
=
Sp(n)

U(n)
,
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where GC ∩ U(2n − 2l, 2l) are non-compact real forms of GC and Sp(n) = GC ∩
U(2n) = U(n,H) is the well known compact real form of GC (referred in the text).

The last equality holds from the fact that the orbit of Sp(n) in GC/P must be

open and closed.

On the other hand, orbits of Sp(2n,R) are only locally closed. The open

ones, the flag domains, certainly appear when H = P
Π
∩ Sp(2n,R) has the low-

est possible dimension as Π varies. From the above we know this has to be n2.

Depending on the signature over Π of h(w1, w2) = iω(w1, w2), leads to the solu-

tions Hl = U(n − l, l). The n-planes are spanned by {e1 + if1, . . . , en−l + ifn−l,

en−l+1 − ifn−l+1, . . . , en − ifn} where {ei, fj} is a symplectic basis.

Thus we may claim to have constructed a holomorphic embedding

J(V, ω, l) =
Sp(2n,R)

U(n− l, l)
−→ GC

P

and the commutative diagram in page 47: notice the first P was the stabilizer of

a lagrangian plane, since (x, 0)J0(y, 0)t = (x, 0)(0, y)t = 0.

Now we proceed with the proof of another statement in section 2.2: if the

almost complex structure J ∇ is integrable over some J (M,ω, l) then the whole

J (M,ω, ∗) is a complex manifold.

Proof. We want to show the conditions in theorem 2.2 are valid for all J ∈
J (M,ω, ∗) if they are valid over some J (M,ω, l). Let x ∈ M and V = TxM .

Consider first the torsion condition:

J+T (J−X, J−Y ) = 0 (4)

∀X, Y and for all J ∈ J(V, ω, l). Fix J0 in this set. Then (4) is saying that T is

taking values in the largest G = Sp(V,R)-invariant subspace of torsion-like tensors

such that

J+
0 T (J−

0 X, J
−
0 Y ) = 0.
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Indeed, recalling (g · J0)
+ = g · J+

0 from theorem 2.4, we have that

J+
0 (g−1 · T )(J−

0 X, J
−
0 Y ) = J+

0 g
−1T (gJ−

0 X, gJ
−
0 Y )

= g−1(g · J0)
+T ((g · J0)

−gX, (g · J0)
−gY )

and hence T is in the subspace iff T satisfies (4). These are the ideas of [20].

Notice the subspace is in 1-1 correspondence with a G-space T of complex

linear tensors defined by the same condition; such mapping is induced by

∧2V ⊗ V −→ ∧2V c ⊗c V
c.

Now, since we can pass to another J(V, ω, l′) by acting on J0 with an element

of GC − G, we just have to prove T is also GC-invariant. Notice furthermore

that analogous arguments follow for the curvature condition, this time with the

G-subspace siting in

∧2V c ⊗c S
2V c

because sp(V,R) = S2V .

Finally, the theory of representations says the irreducible G-subspaces are again

C-isomorphic to some

∧qV c ⊗c S
pV c,

hence also GC-invariant. So we find that both T and the curvature induced sub-

space must satisfy the required condition of GC-invariance. �

In conclusion, representation theory is very, very powerful! And there was never

great advantage for symplectic geometry in considering the whole J (M,ω, ∗), more

than its 0-component.
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