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0.1 The metric

In this short communication we show some computations about the curvature of a metric
defined on the twistor space of a symplectic manifold.

Let (M, ω,∇) be a symplectic manifold endowed with a symplectic connection (that
is ∇ω = 0, T∇ = 0). Recall that the twistor space

Z =
{
j ∈ End TxM : x ∈ M, j2 = −1, ω type (1,1) for j and ω( , j ) > 0

}
is a bundle π : Z → M , with obvious projection, together with an almost complex
structure J ∇ defined as follows. First, notice the connection induces a splitting

0 −→ V −→ TZ = H∇ ⊕ V dπ−→ π∗TM −→ 0

into horizontal and vertical vectors, which is to be preserved by J ∇. Since the fibres
of Z are hermitian symmetric spaces Sp(2n, R)/U(n) — the Siegel domain —, we may
identify

Vj = {A ∈ sp(π∗TM, π∗ω) : Aj = −jA}

and hence J ∇
j acts like left multiplication by j : J ∇

j (A) = jA.
On the horizontal part, the twistor almost complex structure is defined in a tauto-

logical fashion as j itself, up to the bundle isomorphism dπ| : H∇ → π∗TM which occurs
pointwise: thus J ∇

j (X) = (dπ)−1jdπ(X), ∀X horizontal.
Notice that we understand that j ∈ Z also belongs to End (π∗TM)j, so there exists

a canonical section Φ of the endomorphisms bundle defined by Φj = j.
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In [1,2] a few properties and examples of this twistor theory are explored. Between
them, the integrability equation is recalled (cf. [3]), dependent on the curvature of ∇
only. A natural hermitian metric on Z was also considered in [1,2] and our aim now
is to find the sectional curvature in a special case. First we define its associated non-
degenerate 2-form Ω∇. By analogy with the Killing form in Lie algebra theory and a
Cartan’s decomposition of sp(2n, R) = u(n)⊕m, the subspace m playing the role of Vj,
one defines a symplectic form on Z by Ω∇ = t π∗ω − τ , where t ∈]0, +∞[ is a fixed
parameter and

τ(X, Y ) =
1

2
Tr (PX)Φ(PY ).

P is the projection TZ onto V with kernel H∇, thus a V-valued 1-form on Z. It is easy
to see that J ∇ is compatible with Ω∇ and that the induced metric is positive definite.
The following results are proved in the cited thesis.

Theorem 0.1. Ω∇ is closed iff ∇ is flat. In such case, Z is a Kähler manifold.

Let 〈 , 〉 be the induced metric, so that

〈X, Y 〉 = t π∗ω(X,J ∇Y ) +
1

2
Tr (PXPY )

and thus H∇ ⊥ V.

Lemma 0.1. P is a V ⊂ End (π∗TM)-valued 1-form on Z. The connection D =
π∗∇− P on π∗TM preserves V and hence induces a new linear connection D over the
twistor space such that DJ ∇ = 0 and D preserves the splitting of TZ. Moreover, the
torsion TD = P (π∗R∇)− P ∧ dπ.

Let ·h denote the horizontal part of any tangent-valued tensor.

Theorem 0.2. (i) The Levi-Civita connection of 〈 , 〉 is given by

DXY = DXY − PY (π∗X)− 1

2
P (π∗R∇

X,Y ) + S(X, Y )

where S is symmetric and defined both by

〈P (S(X, Y )), A〉 = 〈Aπ∗X, π∗Y 〉, ∀A ∈ V ,

and

〈Sh(X, B), Y 〉 =
1

2
〈P (π∗R∇

X,Y ), B〉, ∀Y ∈ H∇.

Hence for X, Y ∈ H∇ and A, B ∈ V we have

P (S(X, A)) = P (S(A, B)) = 0,

Sh(X, Y ) = Sh(A, B) = 0.

(ii) The fibres π−1(x), x ∈ M , are totally geodesic in ZM .
(iii) If ∇ is flat, then DJ ∇ = 0.
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One may write P (S(X, Y )) explicitly and construct a symplectic-orthonormal basis
of V induced by a given such basis on H∇. We show the first of these assertions.

Proposition 0.1. For X, Y horizontal

Sj(X, Y ) = − t

2

{
ω(X, )jY + ω(jY, )X + ω(jX, )Y + ω(Y, )jX

}
.

In particular, 〈Sj(X, Y )X, Y 〉 = 1
2

(
〈X, Y 〉2 + ‖X‖2|Y ‖2 + t2ω(X, Y )2

)
and

〈Sj(X, X)Y, Y 〉 = 〈X, Y 〉2 − t2ω(X, Y )2.

The proof of the last result is accomplished by simple verifications. The following
is the relevant linear algebra used in its discovery, explained to us by J. Rawnsley.
Since sp(2n, R) ' S2R2n, the symmetric representation space, which is irreducible under
Sp(2n, R), and since

ω2(XY,ZT ) = ω(X, Z)ω(Y, T ) + ω(X, T )ω(Y, Z)

is a non-degenerate symmetric bilinear form, it follows that ω2 must be a multiple of
the Killing form of sp, ie. the trace form!

The twistor space is not compact, nor does the metric extend to any compact space
that we know. Indeed, we have not yet found a proof for the following conjecture: if
∇ is complete, the same is true for D and D.

0.2 Kählerian twistor spaces

The next result appeared in [1] without a proof. Until the end of the subsection assume
R∇ = 0, ie. that the metric 〈 , 〉 is Kählerian.

Theorem 0.3. Let Π be a 2-plane in TjZ spanned by the orthonormal basis {X +A, Y +
B}, X, Y ∈ H∇, A,B ∈ V. Then the sectional curvature of Π is

kj(Π) = −〈RD(X + A, Y + B)(X + A), Y + B〉

= 1
2

(
‖X‖2‖Y ‖2 + 3t2ω(X, Y )2 − 〈X, Y 〉2

)
+

+‖BX − AY ‖2 − 2〈[B, A]X, Y 〉 − ‖[B, A]‖2

where [ , ] is the commutator bracket. Thus

kj(Π)

{
> 0 for Π ⊂ H∇

< 0 for Π ⊂ V .

Proof. Following the previous theorem, notice that S is vertical only. Let U, V be any
two tangent vector fields over Z. Then

dπ∗∇P (U, V ) = π∗∇U(PV )− π∗∇V (PU)− P [U, V ]

= DUPV + [PU, PV ]−DV PU − [PV, PU ]− P [U, V ]

= PTD(U, V ) + 2[PU, PV ] = 2[PU, PV ].
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Hence, from well known connection theory,

RD = Rπ∗∇ − dπ∗∇P + P ∧ P = −P ∧ P.

Now let us use the notation Ruvwz = 〈RD(U, V )W, Z〉. Recall the symmetries Ruvwz =
Rwzuv = −Ruvzw and Bianchi identity Ruvwz +Rvwuz +Rwuvz = 0. Now we want to find

−kj(Π) = 〈RD(X + A, Y + B)(X + A), Y + B〉
= Rxyxy +Rxyxb +Rxyay +Rxyab

+Rxbxy +Rxbxb +Rxbay +Rxbab

+Rayxy +Rayxb +Rayay +Rayab

+Rabxy +Rabxb +Rabay +Rabab

and, if we see this sum as a matrix, then we deduce that it is symmetric.

Notice that RD(X, Y )Z, with X, Y, Z horizontal, and RD(A, B)C, with A, B, C
vertical, can be obtained immediately from Gauss-Codazzi equations. First, notice that
the horizontal distribution is integrable when ∇ is flat. Then the horizontal leaves are
immediately seen to have D, or simply π∗∇, for Levi-Civita connection with the induced
metric; hence they are flat. Finally, S is the 2nd fundamental form, so a formula of Gauss

says RD
X,Y Z = Rπ∗∇

X,Y Z + S(X, Z)Y − S(Y, Z)X. Therefore

−Rxyxy = 〈S(X, Y )X, Y 〉 − 〈S(X, X)Y, Y 〉
= 1

2

(
〈X, Y 〉2 + ‖X‖2|Y ‖2 + t2ω(X, Y )2

)
− 2〈X, Y 〉2 + 2t2ω(X, Y )2

)
= 1

2

(
‖X‖2|Y ‖2 + 3t2ω(X, Y )2 − 〈X, Y 〉2

)
.

which is positive, as we have deduced following proposition 0.1.

By the same principles, RD
A,BC = RD

A,BC = [−P ∧ P (A, B), C] = −[[A, B], C]. For
the (totally geodesic) vertical fibres of Z, we recall that Rabab = −〈[[A, B], A], B〉 =
‖[B, A]‖2 is minus the sectional curvature of the hyperbolic space Sp(2n, R)/U(n). We
also note that the previous curvatures return, respectively, to the horizontal and vertical
subspaces. Hence we get

Rxyxb = Rxyay = Rxbab = Rayab = 0.

Now we want to find Rxbay. First we deduce via theorem 0.2 the formulae DAX =
DAX, DXA = DXA − AX, DAB = DAB. Also, the Lie bracket [X, B] = DXB −
DBX − TD(X, B) = DXB −DBX −BX by lemma 0.1. Thus

RD
X,BA = DXDBA−DBDXA−D[X,B]A

= DXDBA−DBDXA + DB(AX)−DDXB−DBX−BXA

= DXDBA− (DBA)X −DBDXA + DB(AX)−D[X,B]A− A(DBX)− ABX

= RD
X,BA− ABX = −ABX.

Hence Rxbay = −〈ABX, Y 〉, Rxbxb = 〈B2X, X〉 = −‖BX‖2 and

Rxyab = Rabxy = −Rxaby −Rbxay = 〈BAX, Y 〉 − 〈ABX, Y 〉 = 〈[B, A]X, Y 〉.
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Finally

kj(Π) = −Rxyxy − 2Rxyab −Rxbxb − 2Rxbay −Rayay −Rabab

= −Rxyxy + 2〈[A, B]X, Y 〉+ ‖BX‖2 + 2〈ABX, Y 〉+ ‖AY ‖2 −Rabab

= −Rxyxy + 2〈[A, B]X, Y 〉+ ‖BX − AY ‖2 −Rabab

as we wished. The second part of the result follows by Cauchy inequality. �

It is possible to prove that the sectional curvature attains the value −4 in vertical
planes and a the maximum value 2 in horizontal planes. The following problem is closely
related to this.

0.3 A problem in variational calculus

Let T be a real vector space. Let R be a Riemannian curvature-type tensor, ie. an
element of

∧2 T ∗ ⊗
∧2 T ∗ satisfying Bianchi identity and R(u, v, z, w) = R(z, w, u, v).

Let
k : Gr(2, T ) → R

be the induced sectional curvature function on the real Grassmannian of 2-planes of T .
Let H ⊕ V be a direct sum decomposition of T and suppose k is positive in H and
negative in V . Then, are the maximum and minimum of k, respectively, in H and V ?

We do not know a reference for this result — which we believe to be true. We thank
any comments or guidance to the related literature.
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