
Riemannian structure of E Riemannian curvature of g
M,E

Kähler metrics G2 geometry

On vector bundle manifolds with
spherically symmetric metrics

R. Albuquerque

Key Words: vector bundle, metric connection,
spherically symmetric metric, holonomy, G2 manifold.

MSC 2010: 53C...



Riemannian structure of E Riemannian curvature of g
M,E

Kähler metrics G2 geometry

Metric on E and the Levi-Civita connection

Let (M, g
M

) denote a Riemannian manifold.
Let π : E −→ M be a rank-k vector bundle over M.
The vector bundle is endowed with a metric g

E
∈ Ω0

M(S2E ∗) and a

compatible metric connection D
E

:

D
E

g
E

= 0.

The fibres Ex = π−1(x), x ∈ M are smooth submanifolds, with
tangent bundle the trivial bundle: T (Ex) = Ex × Ex .
We have an exact sequence of vector bundles

0 −→ V −→ TE
dπ−→ π∗TM −→ 0

over the manifold E and the vertical bundle V −→ E identifies
with π?E −→ E (indeed, Ve = Te(Ex) = {e} × Ex = (π?E )e).
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Next we use the connection D
E

to induce a horizontal subspace

and hence a splitting of TE . Since HD
E

is identified with the
vector bundle π∗TM, through the restriction of the map dπ, we
may finally write

TE = HD
E

⊕ V ' π∗TM ⊕ π?E .

Any tangent vector X = X h + X v at each point e ∈ E has a
well-defined decomposition.

We also have a natural vector field ξ, a tautological section of
vertical directions, defined by ξe = e ∈ π?E . The important role

played by ξ is shown through a projection onto V with kernel HD
E

:

π?D
E

X hξ = 0 π?D
E

X v ξ = X v .
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Indeed, if s : M → E is a section and X = dsx(u) ∈ Ts(x)E , then

π?D
E

ds(u)ξ = π?(s∗π?D
E

u s∗ξ) = π?(D
E

u s).

In particular, we have T (OM) = HD
E

|OM
.

We consider now the metrics g
M
, g

E
. Clearly the manifold E

inherits a Riemannian structure π∗g
M
⊕ π?g

E
.

Letting ∇M
denote the Levi-Civita connection of M, the

connection D∗∗ = π∗∇M ⊕ π?D
E

is a metric connection, i.e.
D∗∗(π∗g

M
⊕ π?g

E
) = 0. Its torsion satisfies{

dπ(TD∗∗
(X ,Y )) = T∇

M

(dπX , dπY ) = 0

(TD∗∗
(X ,Y ))v = π?D

E

XY v − π?D
E

Y X v − [X ,Y ]v = π?RE (X ,Y )ξ
.

Recall that 〈RE (u,w) , 〉
E
, ∀u,w ∈ TM takes values in Λ2E ∗.
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We are interested in the following metric on the manifold E .
First consider the function r defined by r(e) = 〈e, e〉

E
on E , i.e.

the squared radial-distance to the 0 section. Since

r = π?g
E

(ξ, ξ) and π?D
E

X v ξ = X v ,

we have
dr = 2(π?g

E
)(ξ, ) = 2〈ξ, 〉

E
= 2ξ[.

The Riemannian structure on E we wish to study is defined by

g
M,E

= e2ϕ1π∗g
M
⊕ e2ϕ2π?g

E

where ϕ1, ϕ2 are smooth scalar functions on E dependent only of r
and smooth at r = 0 on the right

Remark. Next we use the notation ϕ′1 = ∂ϕ1
∂r .
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We wish now to find a linear g
M,E

-metric connection over E

keeping the same torsion of D∗∗. We must consider D̃ = D∗∗ + C
with C ∈ Ω0(S2(T ∗E )⊗ TE ) given by (a, b, c1, c2 smooth
functions of r)

CXY = a
(
ξ[(X )Y h + ξ[(Y )X h

)
+

+ c1〈X ,Y 〉M ξ + c2〈X ,Y 〉E ξ + b
(
ξ[(X )Y v + ξ[(Y )X v

)
.

Notice, for instance, 〈X ,Y 〉
M

stands for π∗g
M

(X h,Y h).

Theorem
The linear connection D̃ on the Riemannian manifold E is a metric
connection (D̃ g

M,E
= 0) if and only if

a = 2ϕ′1 c1 = −2ϕ′1e2(ϕ1−ϕ2)

b = 2ϕ′2 c2 = −2ϕ′2
.
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Since C is symmetric, we still have T D̃ = TD∗∗
= π?RE ( , )ξ.

Let us abbreviate the notation for this V-valued tensor:
Rξ = π?RE ( , )ξ.

The Levi-Civita connection ∇M,E
of the metric g

M,E
is given by

∇M,E

X Y = D∗∗X Y + CXY + AXY − 1

2
Rξ(X ,Y )

with C defined above and the π∗TM-valued 2-tensor A defined by

e2ϕ1〈A(X ,Y ),Z 〉
M

=
e2ϕ2

2

(
〈Rξ(X ,Z ),Y 〉

E
+ 〈Rξ(Y ,Z ),X 〉

E

)
.

Notice A is symmetric, so now we have T∇
M,E

= 0. Since
D̃ = D∗∗ + C is a metric connection, we just have to verify

g
M,E

(AXY − 1

2
Rξ(X ,Y ),Z ) = −g

M,E
(Y ,AXZ − 1

2
Rξ(X ,Z )).
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Parallel vector fields and isometries of g
M,E

We try to find parallel vector fields, Killing v. f., isometries...

Let x = (x1, . . . , xm) be a chart of the base defined on an open
subset U ⊂ M (dim M = m). If necessary, restricting to a smaller
open subset we may take an orthonormal frame {e1, . . . , ek} of
E on U. Hence we have a trivialization π−1(U) ' U × Rk with
coordinates (x , y), linear on the fibres by assumption. Since any
point e ∈ π−1(x) may be written as e =

∑
α yαeα, the

tautological vector field ξ satisfies ξe =
∑

α yαπ?eα. We have
r =

∑
α(yα)2 and we denote g

M
(∂i , ∂j) = gij , where ∂i = ∂

∂x i
are

duals to the dx j . This has inverse matrix g jq. We also let π∗∂i
denote the lift of ∂i to the horizontal part of TE . The Christoffel
symbols are defined by ∇M

∂i
∂j = ΓM,h

ij ∂h and DE
∂i

eα = ΓE ,β
iα eβ.

Throughout indices satisfy 1 ≤ i , j , q, l ≤ m and 1 ≤ α, β, ε ≤ k,
and Einstein summation convention is assumed. For the curvature
tensor we denote RE

βαij = 〈RE (∂i , ∂j)eα, eβ〉E .
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Note that ∂i = ∂i (x ,y) also makes sense in π−1(U), but such vector
fields are not horizontal in general. It is easy to see that

π∗∂i = ∂i − yαΓE ,β
iα π?eβ.

Notice π∗g
M

(π∗∂i , π
∗∂j) = gij and π?g

E
(π?eα, π

?eβ) = δβα. Hence

g
M,E

(∂i , ∂j) = e2ϕ1gij + e2ϕ2yαyγΓE ,β
iα ΓE ,β

jγ .
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Following the orthogonal decomposition of TE , any vector field on
E is written as Y = Y jπ∗∂j + Bαπ?eα. Then we may develop four

equations for ∇M,E
Y of different kind:

(∇M,E

π∗∂i
Y )q =

∂Y q

∂x i
+ Y lΓM,q

il + ayαBαδqi +
e2(ϕ2−ϕ1)

2
yαBβRE

βαijg
jq

(∇M,E

π?eβ
Y )q =

∂Y q

∂yβ
+ ayβY q +

e2(ϕ2−ϕ1)

2
yαY jRE

βαjlg
lq

(∇M,E

π∗∂i
Y )α =

∂Bα

∂x i
+ BβΓE ,α

iβ + c1yαY jgij −
1

2
Y jyβRE

αβij

(∇M,E

π?eβ
Y )α =

∂Bα

∂yβ
+ c2Bβyα + byβBα + by εBεδβα

Thus finding a (local) parallel vector field is non-trivial in general,
even if we require Y to be horizontal or to be vertical.
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Proposition

Assume constant weights ϕ1 = ϕ1(r), ϕ2 = ϕ2(r).
(i) The only horizontal parallel vector fields Y on the manifold E
are the horizontal lifts of parallel vector fields Y0 of M for which
RE (Y0, ) = 0.
(ii) The only vertical parallel vector fields on E are the vertical lifts
of parallel sections of π : E −→ M.

Theorem
If the manifold E admits a ∇M,E

-parallel non-vertical vector field,
then M admits a ∇M

-parallel vector field. More precisely, every
g
M,E

-parallel vector field over E restricts over OM to an orthogonal
sum of a parallel vector field of M and a parallel section of E .
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For the more general equation of a Killing field X ∈ X(E ), i.e. a
vector field such that LXgM,E

= 0, equivalently, such that

g
M,E

(∇M,E

Y X ,Z ) + g
M,E

(Y ,∇M,E

Z X ) = 0, ∀Y ,Z ∈ X(E ),

we cannot go much farther. We find

LXgM,E
= e2ϕ1(LX hπ∗gM

)(Y ,Z ) + e2ϕ2(LX vπ?g
E

)(Y ,Z )+

+2ae2ϕ1ξ[(X )〈Y ,Z 〉
M

+ 2be2ϕ2ξ[(X )〈Y ,Z 〉
E

+

+e2ϕ2〈Rξ(X ,Z ),Y 〉
E

+ e2ϕ2〈Rξ(X ,Y ),Z 〉
E
.

Infinitesimal isometries of the space E imply a complicated system.
But we have the following quite immediate construction.
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Suppose we have another Riemannian manifold M1 and vector
bundle E1 −→ M1 endowed with a metric structure g

E1
and metric

connection D
E1 . Suppose also we have a parallel

(f ∗D
E1 ◦ f̂ = f̂ ◦ D

E
) vector bundle isometry f̂ along an isometry

f of the base manifolds (π1 ◦ f̂ = f ◦ π):

E
f̂−→ E1

π ↓ ↓ π1

M
f−→ M1.

Theorem
In the above conditions, for the given same pair of functions ϕ1, ϕ2

on the radius of E and E1, the map f̂ : (E , g
M,E

) −→ (E1, gM1,E1
) is

an isometry.
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Often one has an isometry f : M → M and one vector bundle
E ⊂ ⊗pTM

⊗
⊗qT ∗M, p, q ∈ N, sub-vector bundle of the

(p, q)-tensors on M, such that f∗(Ex) = Ef (x), ∀x ∈ M.

Corollary

For any two functions of r , ϕ1, ϕ2, we have a 1-1 map

Isom(M, g
M

) ↪→ Isom(E , g
M,E

) .
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We continue to deduce some basic properties of the metric.

Proposition

The Riemannian metric g
M,E

and its Levi-Civita connection ∇M,E

satisfy the following properties:
(i) The zero section OM ⊂ E is totally geodesic.
(ii) The fibres of E are totally geodesic.

(iii) The vertical distribution V ⊂ TE is ∇M,E
-parallel iff the

horizontal distribution HD
E

is ∇M,E
-parallel iff ϕ1 is a constant

and D
E

is flat.

The integrability of the horizontal distribution is independent of
the metric.



Riemannian structure of E Riemannian curvature of g
M,E

Kähler metrics G2 geometry

What other sections s : M → E embed M as a totally geodesic
submanifold s(M) = Ms of the Riemannian manifold (E , g

M,E
)? It

is easy to deduce

ds(u) = uh + D
E

u s ∈ Tsx Ms ⊂ Tsx E , ∀u ∈ TxM.

Proposition

Let ϕ1, ϕ2 be constants.
(i) Suppose that RE s = 0. Then Ms is a totally geodesic
submanifold of E if and only if

H
E

(u,w)s := D
E

u D
E

w s − D
E

∇M
u w

s = 0 , ∀u,w ∈ TM.

(ii) Suppose that s0 is a D
E

-parallel section. Then the translation

map t : E −→ E , t(e) = e + s0, is an invariant map of ∇M,E
.

Clearly, H
E

(u,w)s is half of RE
u,w s = Hu,w s − Hw ,us. This

generalized Hessian and its symmetric part are tensorial in u,w .
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Geodesics

Recall the trivialization of E introduced earlier: π−1(U) ' U × Rk

where U is the domain of a chart x of M. Also we use an
orthonormal frame {eα}α=1,...,k , formed by sections of E on U.
A curve γ = γ(t), t ∈ R, with image in π−1(U) ⊂ E may be
written as a map:

γ = (γ1, . . . , γm, y 1, . . . , yk).

γ̇ i denotes derivative with respect to t.
Notice ξγ = yαπ?eα.
In general, γ defines a section y = yαeα of E −→ M along
π ◦ γ = (γ1, . . . , γm).
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Then along this same curve π ◦ γ we have

D
E

∂t y = ẏβeβ + γ̇ iyαΓE ,β
iα eβ = (ẏβ + γ̇ iyαΓE ,β

iα )eβ = zβeβ

where zβ = ẏβ + γ̇ iyαΓE ,β
iα .

Theorem
The curve γ in E is a geodesic of g

M,E
if and only if we have{

γ̈p + γ̇ i γ̇jΓM,p
ij + 2aγ̇pzβyβ + e2ϕ2−2ϕ1 γ̇ izβyµRE

βµiqgqp = 0

żα + γ̇ i γ̇jc1gijy
α + γ̇ izβΓE ,α

iβ − bzβzβyα + 2bzαzβyβ = 0

∀1 ≤ p ≤ m, 1 ≤ α ≤ k.
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A geodesic of g
M,E

is a curve which satisfies γ∗∇M,E

∂t γ̇ = 0, so
first we deduce the canonical decomposition

γ̇ = γ̇ i∂i + ẏβ∂yβ

= γ̇ i (π∗∂i + yαΓE ,β
iα π?eβ) + ẏβπ?eβ

= γ̇ iπ∗∂i + zβπ?eβ

(notice this is essentially γ̇ = γ̇ iπ∗∂i + π?(D
E

∂t
y)). Then

γ∗∇M,E

∂t γ̇ = γ̈ iπ∗∂i + γ̇ i∇M,E

γ̇ π∗∂i + żβπ?eβ + zβ∇M,E

γ̇ π?eβ ,

and since we have

∇M,E

π?eβ
π∗∂i = ayβπ∗∂i + Aπ?eβπ

∗∂i

= ayβπ∗∂i +
e2ϕ2−2ϕ1

2
yµRE

βµijg
jqπ∗∂q ,
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we deduce the two summands

γ̇ i∇M,E

γ̇ π∗∂i = γ̇ i γ̇j
(
ΓM,l
ji π∗∂l + c1gijy

απ?eα −
1

2
Rξ(π∗∂j , π∗∂i )

)
+ γ̇ izβ∇M,E

π?eβ
π∗∂i

= γ̇ i γ̇jΓM,l
ij π∗∂l + γ̇ i γ̇jc1gijy

µπ?eµ

+ γ̇ izβ(ayβπ∗∂i +
e2ϕ2−2ϕ1

2
yµRE

βµijg
jqπ∗∂q)

and

zβ∇M,E

γ̇ π?eβ = zβ γ̇j(ΓE ,µ
jβ π?eµ + ayβπ∗∂j +

e2ϕ2−2ϕ1

2
yµRE

βµjlg
lqπ∗∂q)

+ zβzν(c2δ
β
ν y τπ?eτ + byνπ?eβ + byβπ?eν) .

Recalling c2 = −b, adding and contracting, finishes the proof.
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We recall that ΓM , ΓE and RE depend only of the γ i . Also the
geodesics of M become geodesics of OM , the zero section, as
expected. Other lifts are quite ‘singular’.

Proposition

Let γ be a curve in E which defines a non-vanishing parallel
section y along the curve π ◦ γ, thus having ‖y‖2

E
= r0 6= 0 a

constant. Then γ is a geodesic of g
M,E

if and only if π ◦ γ is a
geodesic of M and ϕ′1(r0) = 0.

Proof.
This is immediate from above, since the assumption is
zα = 0, ∀1 ≤ α ≤ k , and the term γ̇ i γ̇jc1gij = ‖ ˙(π ◦ γ)‖2

M
c1

(notice some yα 6= 0) varies only with c1(r) for any geodesic τ . �
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Regarding the completeness of the metric g
M,E

we have the
following observations. Recall the hypothesis that ϕi , i = 1, 2 are
smooth at r = 0 on the right. Then we conjecture that g

M,E
is

complete if and only if the metric g
M

on M is complete and
also the totally geodesic fibres are complete.
Our argument is first that the Riemannian metric is complete if and
only if the induced metric space structure is complete, and that
solutions for the above system exist on U × Rk . The completeness
on the base and the bundle transition functions assure the smooth
development up to infinity of geodesics contained in E .

Can’t find a reference to this problem. Namely for Sasaki,
E = TM.

But the argument seems to be ok, according to some applications
due to Bryant and Salamon.
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Spherically symmetric metrics on Rk

A vertical geodesic of g
M,E

is a geodesic which lies in the fibres of
E . Any vertical geodesic is equivalent to a geodesic of E which is
tangent to the fibres of E at just one point.
We may thus analyse these curves in the manifold Rk with metric
gϕ = e2ϕ(r)((dy 1)2 + · · ·+ (dyk)2). In this case the usual
r = yαyα.
This metric clearly has spherical symmetry (the canonical term).
We deduce the Levi-Civita connection even from the equations of
∇M,E

. It is given by ∇β∂ν = −bδνβyµ∂µ + byβ∂ν + byν∂β.
From the above Theorem we deduce the geodesic equations:

ÿα + 2bẏαẏβyβ − bẏβ ẏβyα = 0 , ∀1 ≤ α ≤ k .

One may find the Riemannian, Ricci and scalar curvatures.
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The Riemannian curvature of g
M,E

We start by the curvature of a simple case of the metric g
M,E

. We

assume D
E

is flat. Notice M may have curvature.
Let us take the connections D∗∗ = π∗∇M ⊕ π?D

E
and

D̃ = D∗∗ + C defined earlier, which now are both torsion free. So
the L-C connection is ∇M,E

= D̃ On the way, we are assuming two
weight functions ϕ1, ϕ2 of the squared-radius r . Next we use R̃ for
the Riemannian curvature tensor of g

M,E
. The following easy

computations may be of some use:
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R̃(X h,Y h)Zh = π∗RM(X h,Y h)Zh + 4rϕ′1
2
e2ϕ1−2ϕ2(X h ∧ Y h)(Zh)

R̃(X h,Y h)Z v = 0

R̃(X h,Y v )Zh = e2ϕ1−2ϕ2〈X h,Zh〉
(
4(ϕ′′1 + ϕ′1

2 − 2ϕ′1ϕ
′
2)ξ[(Y v )ξ+

2(2rϕ′1ϕ
′
2 + ϕ′1)Y v

)
R̃(X h,Y v )Z v =

(
4(2ϕ′1ϕ

′
2 − ϕ′1

2 − ϕ′′1)ξ[(Y v )ξ[(Z v )

−2(2rϕ′1ϕ
′
2 + ϕ′1)〈Y v ,Z v 〉

)
X h

R̃(X v ,Y v )Zh = 0

R̃(X v ,Y v )Z v = 4(ϕ′′2 − ϕ′2
2
)
(
ξ[(Z v )(X v ∧ Y v )(ξ)−

〈X v ∧ Y v , ξ ∧ Z v 〉ξ
)

+ 4(ϕ′2 + rϕ′2
2
)(X v ∧ Y v )(Z v ).

We use (u ∧ v)z = 〈u, z〉v − 〈v , z〉u, so that constant curvature K
that corresponds to R̃(u, v)z = −K (u ∧ v)z .
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Figure: From “Kobayashi Nomizu”
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The Riemannian curvature at the zero section

Let us again consider the connections D∗∗ and D̃ = D∗∗ + C . We
show the computations of the curvature in general form. Let us
denote

Rg
M,E = R∇

M,E

.

Since ξ = 0 on OM we have C ∧ C |o = 0 at any given point
o ∈ OM of the zero section. It then follows by definition that

RD̃
|o = RD∗∗

+ dD
∗∗

C |o .

Recalling ∇M,E
, the same reasons imply

Rg
M,E |o = RD̃ + dD̃(A− 1

2
Rξ) |o

= RD∗∗
+ dD

∗∗
C + dD

∗∗
(A− 1

2
Rξ) |o .
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Now, X (〈ξ,Y 〉
E

) = 〈X ,Y 〉
E

+ 〈ξ, π?D
E

XY 〉
E

and hence,
∀X ,Y ,Z ,W ∈ TE ,

(D∗∗XCY )Z |o = D∗∗X (CY Z )− CY (D∗∗XZ ) |o

= a〈X ,Y 〉
E

Zh + a〈X ,Z 〉
E

Y h + c1〈Y ,Z 〉M X v+

+ c2〈Y ,Z 〉E X v + b〈X ,Y 〉
E

Z v + b〈X ,Z 〉
E

Y v .

Here, a = a|0 , b = b|0 , etc, just as for all other scalar functions —
we recall, c1e2ϕ2 = −ae2ϕ1 , a = 2ϕ′1, b = 2ϕ′2 = −c2. Then

(dD
∗∗

C )(X ,Y )Z |o =

= (D∗∗XCY )Z − (D∗∗Y CX )Z − C[X ,Y ]Z |o

= a〈X ,Z 〉
E

Y h − a〈Y ,Z 〉
E

X h + c1〈Y ,Z 〉M X v − c1〈X ,Z 〉M Y v

+2b〈X ,Z 〉
E

Y v − 2b〈Y ,Z 〉
E

X v .
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Since

D̃X (Rξ(Y ,Z )) |o = π?D
E

X (π?RE (Y ,Z )ξ) |o

= (π?D
E

Xπ
?RE (Y ,Z ))ξ + π?RE (Y ,Z )π?D

E

X ξ |o

= RE (Y ,Z )X v

(with notation slightly abbreviated), we then have

(D̃XRξY )Z |o = D̃X (Rξ(Y ,Z ))−Rξ(Y , D̃XZ ) |o = RE (Y ,Z )X v

and g
M,E

(D̃Y (A(X ,Z )),W ) |o =

= Y
(
g
M,E

(A(X ,Z ),W )
)
− g

M,E
(A(X ,Z ), D̃Y W ) |o

=
1

2
Y
(
e2ϕ2(〈Rξ(X ,W ),Z 〉

E
+ 〈Rξ(Z ,W ),X 〉

E
)
)
|o

=
1

2
e2ϕ2

(
〈RE (X ,W )Y v ,Z 〉

E
+ 〈RE (Z ,W )Y v ,X 〉

E

)
.
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Finally

g
M,E

(dD̃(A− 1

2
Rξ)(X ,Y )Z ,W ) |o =

= g
M,E

(D̃X (A− 1

2
Rξ)Y Z − D̃Y (A− 1

2
Rξ)X Z ,W ) |o

= g
M,E

(D̃X ((A− 1

2
Rξ)(Y ,Z ))− D̃Y ((A− 1

2
Rξ)(X ,Z )),W ) |o

=
1

2
e2ϕ2

(
〈RE (Y ,W )X v ,Z 〉

E
+ 〈RE (Z ,W )X v ,Y 〉

E

− 〈RE (Y ,Z )X v ,W 〉
E
− 〈RE (X ,W )Y v ,Z 〉

E

− 〈RE (Z ,W )Y v ,X 〉
E

+ 〈RE (X ,Z )Y v ,W 〉
E

)
.

Letting Rg
M,E (X ,Y ,Z ,W ) = g

M,E
(Rg

M,E (X ,Y )Z ,W ), we may
deduce a set of formulas. First recall that

RD∗∗
= π∗RM ⊕ π?RE .
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Theorem
Let x ∈ M, o ∈ OM ⊂ E with π(o) = x. Then at point o

R
g
M,E

o (X h,Y h,Zh,W h) = e2ϕ1〈π∗RM
x (X h,Y h)Zh,W h〉

M

R
g
M,E

o (X h,Y h,Zh,W v ) = 0

R
g
M,E

o (X h,Y h,Z v ,W v ) = e2ϕ2〈π?RE
x (X h,Y h)Z v ,W v 〉

E

R
g
M,E

o (X h,Y v ,Zh,W v ) = ae2ϕ1〈X h,Zh〉
M
〈Y v ,W v 〉

E
+

+
1

2
e2ϕ2〈π?RE

x (X h,Zh)Y v ,W v 〉
E

R
g
M,E

o (X v ,Y v ,Zh,W h) = e2ϕ2〈π?RE
x (Zh,W h)X v ,Y v 〉

E

R
g
M,E

o (X v ,Y v ,Z v ,W h) = 0

R
g
M,E

o (X h,Y v ,Z v ,W v ) = 0

R
g
M,E

o (X v ,Y v ,Z v ,W v ) = −2be2ϕ2
(
〈X v ,W v 〉

E
〈Y v ,Z v 〉

E

−〈X v ,Z v 〉
E
〈Y v ,W v 〉

E

)
.
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Recall E has rank k and M has dimension m.
In the following it is a remarkable surprise that the curvature of D

E

has completely disappeared.

Theorem
The Ricci tensor ricgM,E (X ,Y ) = trRg

M,E ( ,X )Y and the scalar
curvature ScalgM,E = trg

M,E
ricgM,E satisfy (a = a|0 , b = b|0 , as well

as with all other scalar functions):

ric
g
M,E

o (X h,W h) = ricMx (X h,W h)− ake2(ϕ1−ϕ2)〈X h,W h〉
M

ric
g
M,E

o (X h,W v ) = 0

ric
g
M,E

o (X v ,W v ) = (2b(1− k)− am)〈X ,W 〉
E

and also at o

Scal
g
M,E

o = e−2ϕ1ScalMx + e−2ϕ2(2bk(1− k)− 2akm).
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Corollary (“Einstein test”)

If the Riemannian manifold (E , g
M,E

) is Einstein, hence

satisfying ricgM,E = λ
E
g
M,E

, then M is Einstein say with Einstein

constant λ
M

and at o we have

λ
M

e2ϕ2−2ϕ1 + a(m − k) + 2b(k − 1) = 0.

Moreover

λ
E

=(2b(1− k)− am)e−2ϕ2

=λ
M

e−2ϕ1 − ake−2ϕ2 .
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The R
g
M,E

o generate a Lie subalgebra of the orthogonal Lie algebra
of ToE . (Holonomy ⊂ o(m + k) = Λ2Rm+k .)

There are three types of operators R
g
M,E

o (X ,Y ):[
e2ϕ1RM(X h,Y h) 0

0 e2ϕ2RE (X h,Y h)

]
[

0 −B(X h,Y v )
(B(X h,Y v ))† 0

]
,

B(X h,Y v ) = 2ϕ′1e2ϕ1(X h)[ ⊗ (Y v )[ + 1
2 e2ϕ2〈RE (X h, )Y v , 〉

E
,

and [
e2ϕ2〈RE ( , )X v ,Y v 〉

E
0

0 4ϕ′2e2ϕ2(X v )[ ∧ (Y v )[

]
(·† is the adjoint with respect to the non-weighted metric).
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By Ambrose-Singer these endomorphisms generate the local
holonomy algebra.

The flat connection again

Suppose D
E

is a flat connection on E −→ M with the dimensions
m = dim M, m + k = dim E , k = rkE . At a point o ∈ OM we
find the Riemannian curvature of g

M,E
and find in the most general

case, i.e. when both ϕ′1(0), ϕ′2(0) 6= 0, the three types of
endomorphisms in o(ToE , g

M,E
) ' Λ2Rm+k = Λ2Rm ⊕ p⊕ Λ2Rk :[

RM 0
0 0

] [
0 −Eα

i

(Eα
i )† 0

] [
0 0
0 eα ∧ eβ

]
∀i , j , α, β.

The matrices Eα
i = [δpi δ

β
α]pβ and those in the middle generate the

subspace p of dimension mk .
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Since [p, p] = o(m)⊕ o(k), we find the first part of the following
result.

Proposition

Let holgM,E denote the whole holonomy Lie algebra.
(i) If ϕ′1(0) 6= 0, then holgM,E = o(m + k).
(ii) If ϕ′1(0) = 0 6= ϕ′2(0), then holgM,E ⊇ holM ⊕ o(k).
(iii) holgM,E ⊇ holM , with equality if both ϕ1, ϕ2 are constant.
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Hermitian tangent bundle with generalized Sasaki metric

Given any (Riemannian) manifold M, the generalized Sasaki almost
Hermitian structure consists of the g

M,E
-compatible almost

complex structure Jψ on the manifold E = TM defined by

Jψ = e−ψB − eψB†

where ψ = ϕ2 − ϕ1 and the well-defined endomorphism
B : TTM −→ TTM = π∗TM ⊕ π?TM : BZh = Z v , BZ v = 0.
(B cannot be defined on other vector bundles; it is the diagonal
group structure ∆ ⊂ GL(m)×GL(m)). Notice:

Jψ ◦ Jψ = (e−ψB − eψB†) ◦ (e−ψB − eψB†) = −1TTM .

Jψ generalizes the case ϕ1 = ϕ2 = 0, due to Sasaki.
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Indeed we have an almost Hermitian structure:

g
M,E

(Jψ , Jψ ) = g
M,E

( , ).

It follows that the associated symplectic 2-form ωψ := Jψyg
M,E

satisfies (we let ψ = ϕ2 + ϕ1)

ωψ = eψω0.

Proposition

For dim M > 1, the 2-form ωψ on E = TM is symplectic if and
only if ψ is a constant.

Proof.
First d(eψω0) = deψ ∧ ω0 + eψdω0. Since D∗∗ω0 = 0 we find
dω0(X ,Y ,Z) = ω0(TD∗∗

(X ,Y ),Z)+ω0(TD∗∗
(Y ,Z),X )+ω0(TD∗∗

(Z ,X ),Y ).
Since TD∗∗

( , ) = π?RE ( , )ξ, we always have dω0 = 0 by Bianchi identity. �
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Now, in arXiv1609.03125, we have deduced when Jψ is integrable.
We found non trivial solutions — however, a particular case of a
result of V. Oproiu and N. Papaghiuc, cf. arXiv1609.03125.
In any dimension, the unique non-flat solutions are the tangent
disk bundles Dr0M = {u ∈ TM : ‖u‖2 < r0} of a real base
manifold M of constant sectional curvature κ 6= 0 with any
squared-radius r0 ∈ R+ and metric satisfying eϕ1−ϕ2 =

√
1 + κr .

For a complete metric, M = Sm is a sphere (κ > 0) and r0 = +∞.
Such disk bundles are also Kählerian if we take ψ = 0 (i.e.
ϕ1 = −ϕ2). The metric is given by

g
M,DM

=
√

1 + κr π∗g
M
⊕ 1√

1 + κr
π?g

TM

where r0 = −1/κ if κ < 0. And r0 = +∞ otherwise.
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By analogy with Bryant and Salamon, the metric is complete if
and only if the rays to infinity have infinite length:∫ r0

0

∥∥ d

dt

∥∥
M,DM

dt =

∫ r0

0

1
4
√

1 + κt2
dt.

The holonomy lies in the unitary Lie algebra u(m).
At the zero section we find

u(m) for m > 2 and su(2) for m = 2.

We find the possible Einstein constant:

ΛDM =
1

2
(m − 2)κ.

The zero section OM can only tell us about the whole geometry of
E when we have Jψ parallel.
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Metrics with G2 holonomy

G2 manifolds are very active in String theory...
G2 := AutO ⊂ SO(7) is a simplyconnected, compact, simple Lie
group of dimension 14.

A 7-dimensional manifold E carries a G2 structure if it admits a
certain stable 3-form φ. This 3-form yields a metric gφ such that φ
becomes φ(X ,Y ,Z ) = 〈X · Y ,Z 〉φ and each 7-dim TeE inherits
the structure of =(O).

Theorem (Fernández-Gray)

∇gφφ = 0 iff dφ = d ∗ φ = 0.

Famous example by R. Bryant and S. Salamon on Λ2
−T ∗M −→ M

produces true complete holonomy G2.
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In arXiv1401.7314 we study some generalizations of the metrics of
Bryant-Salamon on the vector bundle

E := Λ2
−T ∗M −→ M

of self-dual and anti-self-dual 2-forms.
M denotes an oriented Riemannian 4-manifold.
The constructed G2 structures on E are parallel for positive scalar
curvature self-dual Einstein manifolds, this is, S4 and CP2.

A change of orientation is ok, but in working with Λ2
+ one finds a

mirror construction for negative scalar curvature and finds an
unknown number of new examples of Riemannian 7-manifolds
with G2 holonomy. In particular for the Einstein base M = H4 and
the anti-self-dual H2

C, respectively, the real and complex hyperbolic
spaces.
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When trying to find the holonomy subgroup of G2, the Lie theory
for those new symmetric spaces fails. The arguments of
Bryant-Salamon cannot be reproduced for ScalM ≤ 0.
Now, our theory gives a general proof that the holonomy groups
are the whole G2. (The study includes the ScalM = 0 base, which
yields a different conclusion.)

Remark. Similar metrics on vector bundle manifolds with G2

holonomy were also found by G. W. Gibbons, D. N. Page and
C. N. Pope, also with the bundles over S4 and CP2.
They too do not see the ScalM ≤ 0 cases.
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We have a manifold E = Λ2
±T ∗M and a G2 metric g

M,E
in general.

We shall not be focused on the G2 structure, the 3-form φ, which
determines the metric.

Given an oriented orthonormal frame {e4, e5, e6, e7} of T ∗M on an
open subset, we have a frame on E on the same open subset
defined by

e1 = e45 ± e67 , e2 = e46 ∓ e57 , e3 = e47 ± e56.

The metric g
E

on E = E± = Λ2
±T ∗M → M, as a vector bundle, is

such that {e1, e2, e3} is an orthonormal frame.

This implies e.g. r = ‖e1‖
E

= 1
2 e1(e1).
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We consider:
• Λ2
− when the base manifold M is Einstein and self-dual (i.e. has

vanishing anti-self dual Weyl tensor W− = 0).
• Λ2

+ when M is Einstein anti-self-dual (W+ = 0).
The vector bundles E± inherit a metric connection from the
Levi-Civita connection ∇M (this commutes with ∗ operator).

It is easy to see the “Bryant-Salamon” metric on E± is a
spherically symmetric metric g

M,E
with certain weight functions:

g
M,E

=
√

2c̃2
0 sr + c̃1 π

∗g
M
⊕ c̃2

0√
2c̃2

0 sr + c̃1

π?g
E

where c̃0, c̃1 > 0 are constants and s = 1
12Scal

M .
We keep the two constants c̃0, c̃1, although we may further
normalize...
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We already know the metric g
M,E

has holonomy inside G2 (i.e. φ is
parallel for the Levi-Civita connection itself induces).
Again, for ScalM < 0 we are forced to restrict the study to the
open disk bundle of radius

√
r0, where r0 = −c̃1/2s,

Dr0,±M = {e ∈ E : ‖e‖2
E
< r0}.

The spherically symmetric metric weights are given by

ϕ1(r) =
1

4
log(2c̃2

0 sr + c̃1) ϕ2(r) = −1

4
log(2c̃2

0 sr + c̃1) + log c̃0.
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Then

e2ϕ1(0) = c̃
1
2

1 e2ϕ2(0) = c̃2
0 c̃
− 1

2
1

ϕ′1(r) =
c̃2

0 s

2(2c̃2
0 sr + c̃1)

ϕ′2(r) = − c̃2
0 s

2(2c̃2
0 sr + c̃1)

and

ϕ′1(0) =
c̃2

0 s

2c̃1
= −ϕ′2(0).

Regarding the famous coefficients of the map “C ”, defined by
a = 2ϕ′1, b = 2ϕ′2 = −c2, c1 = −2ϕ′1e2ϕ1−2ϕ2 , we find at 0

a = −b = c2 =
c̃2

0 s

c̃1
c1 = −s.
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Any holonomy G2 manifold is Ricci flat (E. Bonan). In our case
this may be confirmed by the “Einstein test”.
Indeed, we have both

2b(1− k)− am = −4(b + a) = 0

and

λ
M

e−2ϕ1 − ake−2ϕ2 = 3sc̃
− 1

2
1 − 3

c̃2
0 s

c̃1
c̃−2

0 c̃
1
2

1 = 0.
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We now write our main result for the metrics g
M,E

on Λ2
−T ∗M if

s > 0 and Dr0,+M if s < 0.

Theorem
For s 6= 0, the holonomy group of g

M,E
is the Lie group G2.

For the proof...
Recall the decomposition of the curvature tensor of
4-manifolds under the Lie algebra o(4) = o(3)⊕ o(3). The
symmetric operator on 2-forms defined by

〈R(eα ∧ eβ), eγ ∧ eδ〉M = −〈RM(eα, eβ)eγ , eδ〉M = RM
αβγδ

gives rise to an irreducible decomposition respecting Λ2
+ ⊕ Λ2

−

R =

[
W+ + s13 ric0

ric0
† W− + s13

]
.
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W = W+ + W− is the Weyl tensor, traceless. The map ric0 is the
traceless part of ricgM . It follows s = 1

12Scal
M .

Now the curvature of the vector bundle E is given in the frame
(e1, e2, e3) by

RE (e1, e2, e3) = (e1, e2, e3)ρ where ρ =

 0 −ρ3 ρ2

ρ3 0 −ρ1

−ρ2 ρ1 0

 .
In other words

REe i = ρke j − ρjek , ∀ cycle (ijk) = (123).

We may write again ρ, more precisely each ρi+ and ρi−, as a linear
combination of the self-dual and anti-self dual 2-forms.
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Taking a dual frame of the e4, e5, e6, e7, we find respective
2-vectors e1, e2, e3, which verify e i±(e±,j) = 2δij , e i±(e∓,j) = 0,
∀i , j = 1, 2, 3. Careful computations yield:

ρi+(e+,j) = −Rij ρi±(e∓,j) = ∓Ri j̄ ρi−(e−,j) = +Rī j̄ .

Notice, for instance, Rij = 〈Rei , ej〉M .
If M is Einstein, equivalently, if ric0 = 0, then s is a constant.

M is self-dual if W = W+. Self-dual and Einstein is the same as

W− = 0 ⇐⇒ ρi− = se i− , ∀i = 1, 2, 3.

Anti-self-duality corresponds to W = W−. Together with the
Einstein condition, that implies ρi+ = −se i+.
All together, the hypothesis is that ρi = ∓se i .
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Now, we just have to prove dim holgM,E = 14 = dimG2.
By Ambrose-Singer, the holonomy is generated by those matrices
in o(7) found earlier:

Rg
M,E (X h,Y h) =

[
c̃

1
2

1 RM(X h,Y h) 0

0 c̃2
0 c̃
− 1

2
1 RE (X h,Y h)

]

Rg
M,E (X h,Y v ) =

[
0 −B

B† 0

]
with B(X h,Y v ) = ac̃

1
2

1 (X h)[ ⊗ (Y v )[ + 1
2 c̃2

0 c̃
− 1

2
1 〈RE (X h, )Y v , 〉

E

and

Rg
M,E (X v ,Y v ) =

[
c̃2

0 c̃
− 1

2
1 〈RE ( , )X v ,Y v 〉

E
0

0 2bc̃2
0 c̃
− 1

2
1 (X v )[ ∧ (Y v )[

]
.
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Notice we may consider the horizontal lift of ei as well as the
vertical lift of e i , which we have denoted by π?e i . Recall
〈e i , e j〉

E
= 1

2〈e
i , e j〉

M
= δij , ∀i , j = 1, 2, 3. We then conclude

various identities on the manifold E . First, in coherence with the
above,

1

2
〈RM(ek), ei 〉M = −1

2
Rki = ±1

2
ρk±(ei ) = −sδik

and hence RM(ek) = −sek (the horizontal lift, the pullback).
Second, in positive order (ijk),

〈RE (ek)π?e i , π?e j〉
E

= ρk(ek) = ∓2s = ∓2s(π?e i ∧ π?e j)(ei , ej).

Finally, the orthogonal maps Rg
M,E (ehk ) and Rg

M,E (π?e i , π?e j),
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Rg
M,E (ehk ) =

[
−c̃

1
2

1 sek 0

0 ∓2sc̃2
0 c̃
− 1

2
1 π?e i ∧ π?e j

]
,

Rg
M,E (π?e i , π?e j) =

[
∓c̃2

0 c̃
− 1

2
1 sek 0

0 −2sc̃4
0 c̃
− 3

2
1 π?e i ∧ π?e j

]
,

are the same:

± c̃2
0

c̃1
Rg

M,E (ehk ) = Rg
M,E (π?e i , π?e j)

and we have proved all these 6 maps generate a 3-dimensional
subspace.
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There is another 3-dimensional subspace of maps, non-vanishing
just in the 4× 4-square, generated by the

Rg
M,E (eh

k̄
) =

[
c̃

1
2

1 RM(X h,Y h) 0
0 0

]
.

They refer to W∓ + s13 and do not vanish because s 6= 0.
(Sometimes W+ or W− do not vanish either.)
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We are left to prove the Rg
M,E (X h,Y v ) generate an 8-dimensional

subspace. Let us take any α = 4, 5, 6, 7. Letting θi = 〈π?e i , 〉
E

,
we have:

Rg
M,E (eα, π

?e i ,Zh,W v ) =

= ac̃
1
2

1 〈eα,Z
h〉

M
〈π?e i ,W v 〉

E
+

1

2
c̃2

0 c̃
− 1

2
1 〈R

E (eα,Z
h)π?e i ,W v 〉

E

=
c̃2

0 s

2c̃
1
2

1

(
2eα(Zh)〈π?e i ,W v 〉

E
∓ ek(eα,Z

h)〈π?e j ,W v 〉
E
±

e j(eα,Z
h)〈π?ek ,W v 〉

E

)
.

Hence

Rg
M,E (eα, π

?e i ) =
c̃2

0 s

2c̃
1
2

1

(
2eα ∧ θi ∓ eαye

k ∧ θj ± eαye
j ∧ θk

)
.
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Computing case by case we get four linearly independent
families of three similar 2-forms. Writting Vαi = eα ∧ θi , we get
for instance

Rg
M,E (e4, π

?e1) = 2V41 ∓ V72 ± V63

Rg
M,E (e7, π

?e2) = 2V72 ∓ V41 + V63

Rg
M,E (e6, π

?e3) = 2V63 ± V41 + V72

.

These forms are linearly dependent. In fact, each and all the
following matrices, corresponding to the four families, have rank 2: 2 ∓1 ±1

∓1 2 1
±1 1 2

  2 −1 −1
−1 2 −1
−1 −1 2


 2 1 ∓1

1 2 ±1
∓1 ±1 2

  2 ±1 1
±1 2 ∓1
1 ∓1 2


and therefore the curvature generates a subspace of dimension 8,

q.e.d.
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The case s = 0 implies constant ϕ1, ϕ2.
Recall the famous K3 surfaces are Kähler surfaces (4 real dim);
with the Calabi-Yau metric, they have a fixed orientation, are
non-flat, Ricci-flat and anti-self-dual.
Anti-self-duality occurs necessarily with every scalar flat Kähler
surface (A. Derdzinski).
K3 surfaces have thus holonomy SU(2).
K3 surfaces and quotients of the 4-torus by finite groups give us all
the compact spin Ricci-flat Kähler surfaces and hence anti-self-dual
4-manifolds (C. Lebrun).
The flat torus case being trivial, we proceed.

Theorem
For any K3 surface M, the G2 metrics on E+ = Λ2

+T ∗M have
holonomy SU(2) ⊂ G2.

Proof.
Apply global formulas, since E is flat for s = 0 as we have seen. �
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Resuming with ScalM 6= 0. Let us stress we are now completely
sure the spaces

Dr0,±H4 and Dr0,+H2
C , (1)

with the metric g
M,E

, have G2 holonomy.

Let us see a topological proof for the Bryant-Salamon metrics.
This third independent proof is, again, suitable only for the
positive ScalM cases.

Proposition

The G2 metric on Λ2
−T ∗S4 has holonomy equal to G2.
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Proof.
A theorem of Bryant assures that if the holonomy group is
contained in G2 and the metric does not admit parallel vector
fields, then the subgroup coincides with the whole group. Now if
E− had a parallel vector field Y = Y h + Y v for the G2 metric,
then this would restrict over the zero section OM to the sum of a
parallel vector field Y h and a parallel section Y v . These fields
would have constant norm. But S4 does not have non-vanishing
vector fields, nor it admits a non-degenerate 2-form field (an
almost-complex structure). Of course every self- or anti-self-dual
2-form is non-degenerate. �

Analogously, for CP2; because it does not admit a non-vanishing
vector field, nor a Kähler structure compatible with the
Fubini-Study metric and inducing the reversed orientation. It is

well-known that CP2
is not even a complex manifold.
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