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Riemannian structure of E

Metric on E and the Levi-Civita connection

Let (M, g,,) denote a Riemannian manifold.
Let m: E — M be a rank-k vector bundle over M.
The vector bundle is endowed with a metric g, € Q9,(S?E*) and a

compatible metric connection DF:
E
D g.=0.

The fibres E, = 7~1(x), x € M are smooth submanifolds, with
tangent bundle the trivial bundle: T(Ey) = Ex x Ex.
We have an exact sequence of vector bundles

0—V— TE-S 2" TM — 0

over the manifold E and the vertical bundle Y — E identifies
with 7E — E (indeed, Ve = Te(Ex) = {e} x Ex = (77E)e).



Riemannian structure of E

Next we use the connection D° to induce a horizontal subspace

E
and hence a splitting of TE. Since #P s identified with the
vector bundle 7* TM, through the restriction of the map dm, we
may finally write

E
TE=HP oV ~r*TM o 1*E.

Any tangent vector X = X/ 4+ XV at each point e € E has a
well-defined decomposition.

We also have a natural vector field &, a tautological section of
vertical directions, defined by £, = e € 7*E. The important role

E
played by ¢ is shown through a projection onto V with kernel #P :

T D=0 7Dy = X"
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Riemannian structure of E

Indeed, if s : M — E is a section and X = dsy(u) € T E, then
w*Djs(u)g = m*(s*1*D, s*¢) = m*(D,, s).

E
In particular, we have T(Oy) = H%M.
We consider now the metrics g,,, g.. Clearly the manifold E
inherits a Riemannian structure 7*g,, ® 7*g;.
Letting V" denote the Levi-Civita connection of M, the

. M E, . . )
connection D** = 7*V~ @ 7*D  is a metric connection, i.e.
D**(r*g,, @ 7*g.) = 0. Its torsion satisfies

* 3k M
dn(TP7(X,Y)) =TV (dzX,dnY) =0
(TP (X, Y)Y = Dy Y — Dy X¥ — [X, Y]* = mRE(X,Y)¢

Recall that (RE(u,w) , )., Vu,w € TM takes values in A2E*.



Riemannian structure of E

We are interested in the following metric on the manifold E.
First consider the function r defined by r(e) = (e, e), on E, i.e.
the squared radial-distance to the 0 section. Since

r=m"g.(&¢§) and W*D;vf = XY,

we have
dr = 2(7T*gE)(§7 ) = 2<§7 >E = 2£b'
The Riemannian structure on £ we wish to study is defined by

_ 2p1, % 200, %
gM’E—e“"ﬂgM@e“’ﬂgE

where 1, o are smooth scalar functions on E dependent only of r
and smooth at r = 0 on the right

Remark. Next we use the notation ¢} = %.



Riemannian structure of E

We wish now to find a linear g,, .-metric connection over E
keeping the same torsion of D**. We must consider D=D"*+C
with C € QO(S?(T*E) ® TE) given by (a, b, c1, c; smooth
functions of r)
CxY = a(@X)YM+ & (V)X +
+ C1<X7 Y>M€ + C2<X7 Y>E§ + b(gb(X)Yv + ‘fb(Y)XV) :

Notice, for instance, (X, Y),, stands for 7*g, (X", Y).

Theorem B
The linear co~nnection D on the Riemannian manifold E is a metric
connection (Dg,, . = 0) if and only if

b =2y, o = —2¢)



Riemannian structure of E

Since C is symmetric, we still have TP = TD™" = 7*RE( )¢
Let us abbreviate the notation for this V-valued tensor:
RS =7*RE(, )E.

The Levi-Civita connection V""" of the metric 8y ¢ IS given by
M,E ok 1 5

with C defined above and the 7* TM-valued 2-tensor A defined by

62§02

e*1(A(X,Y),2), = ((RE(X,Z),Y), + (RY(Y, Z),X),).

M,E )
Notice A is symmetric, so now we have TV =0. Since
D = D** + C is a metric connection, we just have to verify

1 1
Sue(AxY — ERﬁ(x, Y),Z)=—g,(Y,AxZ - Eni(x, 2)).



Riemannian structure of E

Parallel vector fields and isometries of g,, ,

We try to find parallel vector fields, Killing v. f., isometries...

Let x = (x1,...,x™) be a chart of the base defined on an open
subset U C M (dim M = m). If necessary, restricting to a smaller
open subset we may take an orthonormal frame {ei, ..., e} of
E on U. Hence we have a trivialization 771(U) ~ U x R with
coordinates (x,y), linear on the fibres by assumption. Since any
point e € 7~ !(x) may be written as e = Y y“e,, the
tautological vector field £ satisfies £ = ), y*7*e,. We have
r=>3%.(y%)? and we denote g,,(9;,9;) = g, where 9; = % are
duals to the dx/. This has inverse matrix g/9. We also let 7*0;
denote the lift of J; to the horizontal part of TE. The Christoffel
symbols are defined by Va 0j = FM h8 and Da €q = I'i;ﬁeg
Throughout indices satisfy 1 < I,J g,/ <mand 1< aq,fB,e<k,
and Einstein summation convention is assumed. For the curvature
tensor we denote Rﬁau (RE(0;,0; )i)ea: €3) -



Riemannian structure of E

Note that 9; = (x,,) also makes sense in 7~1(U), but such vector
fields are not horizontal in general. It is easy to see that

7T*8,' = 8,‘ — yarli’ﬁﬂ*eg.
Notice *g,, (7*0;, 7*0;) = gjj and 1*g (7" eq, T*€3) = 85 Hence

E,BrE,
gM,E(ai7 aj) = e2<’01gfj + e2s02y01ywria/3|'hﬁ‘



Riemannian structure of E

Following the orthogonal decomposition of TE, any vector field on
E is written as Y = Y/7*0; + B“m*e,. Then we may develop four
equations for V""" Y of different kind:

oY9a 2(p2—¢1) .
(VoY) = G + YT+ 2y BoG] + =y BRE
' X

e oYd e2(p2—1) )
(Vw*eﬁ Y)q - 87}/’8 T ayﬁ Y9+ yey! R,gajlglq

M,E oB« E, i 1, E
(Vi Y)Y = o T Bﬁr,-ga +ay®Ygj— §YJY’BRa,8ij

| oB°

(VoY) = 5,7+ ©2By® + by? B + by Bs”

Thus finding a (local) parallel vector field is non-trivial in general,
even if we require Y to be horizontal or to be vertical.



Riemannian structure of E

Proposition

Assume constant weights ©1 = p1(r), @2 = pa(r).

(i) The only horizontal parallel vector fields Y on the manifold E
are the horizontal lifts of parallel vector fields Yy of M for which
RE(Ys, ) =0.

(ii) The only vertical parallel vector fields on E are the vertical lifts
of parallel sections of m : E —> M.

Theorem

If the manifold E admits a VM’E-paralIel non-vertical vector field,
then M admits a VM—para//e/ vector field. More precisely, every
gy g-parallel vector field over E restricts over Oy to an orthogonal
sum of a parallel vector field of M and a parallel section of E.



Riemannian structure of E

For the more general equation of a Killing field X € X(E), i.e. a
vector field such that /v'ng,E = 0, equivalently, such that

8ue(Vy X, 2) +8,.(Y,Vz X)=0, VY,Z e X(E),
we cannot go much farther. We find

Lxgy e = e (Lxpmgy) (Y, Z) + 7 (Lxvng )Y, Z)+
+2ae271E(X)Y, Z),, + 2be*72(X)(Y, Z) .+
+e22(R8(X, 2), YY), + e*2(R8(X, Y), Z),.

Infinitesimal isometries of the space E imply a complicated system.
But we have the following quite immediate construction.



Riemannian structure of E

Suppose we have another Riemannian manifold M; and vector
bundle £y — M; endowed with a metric structure 8¢, and metric

connection D™ Suppose also we have a parallel
(f*DE1 of =fo DE) vector bundle isometry f along an isometry
f of the base manifolds (71 0 f = f o7):

E % F
T lm
M oMy

Theorem

In the above conditions, for the glven same pair of functions 1, w2
on the radius of E and Ey, the map f : (E, Sue) — (E1:8y, ) IS
an isometry.



Riemannian structure of E

Often one has an isometry f : M — M and one vector bundle
EC®RPTMQQ®IT*M, p,q € N, sub-vector bundle of the
(p, g)-tensors on M, such that f.(Ex) = E¢(), Vx € M.

Corollary

For any two functions of r, 1,2, we have a 1-1 map

Isom(M, g,,) — Isom(E,g,, ;) -



Riemannian structure of E

We continue to deduce some basic properties of the metric.

Proposition

The Riemannian metric g,, . and its Levi-Civita connection v
satisfy the following properties:

(i) The zero section Oy C E is totally geodesic.

(ii) The fibres of E are totally geodesic.

(iii) The vertical distribution ¥V C TE is V" parallel iff the

E
horizontal distribution HP s VM’E-paraIle/ iff p1 is a constant
and D is flat.

The integrability of the horizontal distribution is independent of
the metric.



Riemannian structure of E

What other sections s : M — E embed M as a totally geodesic
submanifold s(M) = M* of the Riemannian manifold (E,g,, .)? It
is easy to deduce

ds(u) =u"+ D.s € T, M* C T, E, Yue T(M.

Proposition

Let p1, 9> be constants.
(i) Suppose that REs = 0. Then M* is a totally geodesic
submanifold of E if and only if

H'(u,w)s := D,D,s = D_w s=0, Yu,weTM.

(ii) Suppose that sy is a DE-para//e/ section. Then the translation
map t: E —s E, t(e) = e+ s, is an invariant map of V' .
Clearly, H" (u, w)s is half of RE,,s = Hyws — Hw,us. This
generalized Hessian and its symmetric part are tensorial in u, w.



Riemannian structure of E

Geodesics

Recall the trivialization of E introduced earlier: 7=1(U) ~ U x R¥
where U is the domain of a chart x of M. Also we use an
orthonormal frame {e, }q=1,... k, formed by sections of E on U.

A curve v = 7(t), t € R, with image in 771(U) C E may be
written as a map:

y=0 ™y YR,

4! denotes derivative with respect to t.

Notice &, = y*m*e,.

In general, v defines a section y = y®e, of E — M along
moy=(...,9M).



Riemannian structure of E

Then along this same curve 7 o v we have
E . ) E, . ‘i E,
Dyy = VPes —|—’y’yo‘ria'8e5 = (y* + y'yar,j)eﬂ = ZPes

where 28 = yf +A'yrn.

Theorem
The curve v in E is a geodesic of g,, . if and only if we have

5P 4 yiﬁjrgﬂvi’ +2a5PZByP + e2‘P2_2@0W"zﬁy“R§mngp -0
2%+ 45 1 gy + Vzﬁl_iE/B’a — bzP 2Py 4 2bz22P Y8 =0

Vi<p<m, 1<a<k.



Riemannian structure of E

A geodesic of g,, . is a curve which satisfies 'y*VM’Eat"y =0, so
first we deduce the canonical decomposition
i =510, + 59,
=4/(n*0; +y°T
=47 8; + 2’371'*65

E)IB y
ia ﬂ—*eﬂ) + yﬁﬂ*eﬁ

(notice this is essentially 4 = /7*0; + w*(Dgty)). Then
PV 0 = A0+ AV w0+ Prres + 2PV e

and since we have

M,E
T*eg

\Y% m*0; = ayﬁﬂ*(‘),- + Aw*eﬁﬂ'*a,'

62@272501

= ayP7*0; + #y“nggf%*aq ,



Riemannian structure of E

we deduce the two summands
’y'Vf; 10 = Al (FJI-:-/I’IW O+ c1gjjy“nr e, — 5725(7 9j, ;)
+ ﬁ"zﬁvri;w*a'

M.l
—vvjr ™0 + Y'Y crgjyt e,
62902 2¢1

52y w0+ Sy RE, 8 g)
and

8 8 " e?P2=2¢1 E  _lg_*
z V o e =1z 'yf( P e, + ay’n*0; +Ty“R5M-,gq7r Dq)
+ zﬂz (c6Py™m*e, + by"m*eg + byPn*e,) .

Recalling co = —b, adding and contracting, finishes the proof.



Riemannian structure of E

We recall that T, T'E and RE depend only of the 4/. Also the
geodesics of M become geodesics of Oy, the zero section, as
expected. Other lifts are quite ‘singular’.

Proposition
Let v be a curve in E which defines a non-vanishing parallel
section y along the curve 7 o ~y, thus having ||y\|i =rn#0a

constant. Then v is a geodesic of g, . if and only if T o~y is a
geodesic of M and ¢(ry) = 0.

Proof.

This is immediate from above, since the assumption is

2% =0, V1 < a < k, and the term 43/ c1g; = [|(7 0 7) |12 a1
(notice some y® # 0) varies only with ¢;(r) for any geodesic 7. W



Riemannian structure of E

Regarding the completeness of the metric g,, . we have the
following observations. Recall the hypothesis that ¢;, i = 1,2 are
smooth at r = 0 on the right. Then we conjecture that g,, . is
complete if and only if the metric g,, on M is complete and
also the totally geodesic fibres are complete.

Our argument is first that the Riemannian metric is complete if and
only if the induced metric space structure is complete, and that
solutions for the above system exist on U x R¥. The completeness
on the base and the bundle transition functions assure the smooth
development up to infinity of geodesics contained in E.

Can't find a reference to this problem. Namely for Sasaki,
E=TM.

But the argument seems to be ok, according to some applications
due to Bryant and Salamon.



Riemannian structure of E

Spherically symmetric metrics on R¥

A vertical geodesic of g, . is a geodesic which lies in the fibres of
E. Any vertical geodesic is equivalent to a geodesic of E which is
tangent to the fibres of E at just one point.

We may thus analyse these curves in the manifold R¥ with metric
g, = e2?(((dy™)? + - -- 4 (dy*)?). In this case the usual
r=y%*y*.

This metric clearly has spherical symmetry (the canonical term).
We deduce the Levi-Civita connection even from the equations of
v Itis given by V0, = —bégy’”@u + by?0, + by" 0p.

From the above Theorem we deduce the geodesic equations:

Vo 426y yPyP — byPyPye =0, Vi<a<k.

One may find the Riemannian, Ricci and scalar curvatures.



Riemannian curvature of gy E

The Riemannian curvature of g,, .

We start by the curvature of a simple case of the metric g,, .. We

assume D" is flat. Notice M may have curvature.

Let us take the connections D** = V" @& D" and

D = D** + C defined earlier, which now are both torsion free. So

the L-C connection is V""“ = D On the way, we are assuming two
weight functions 1, > of the squared-radius r. Next we use R for
the Riemannian curvature tensor of g,, .. The following easy

computations may be of some use:



Riemannian curvature of gy E

R(X", YMZh = m*RM(X", Y Zh + arpy? 271222 (xh A Y (Zh)
R(X" y"zv =0
(X, ¥)Zh = 2017202 (XP Z0) (a(] + 17 — 26405)€" (Y )E+

2(2reh b + 1) YY)
RIX", YV)ZY = (42010 — &) — ])E(YV)E(Z2Y)

—2(2rgheh + )YV, Z2)) X"

R(X",Y")Z"=0
I v v v 2 v v v
R(XY,YY)Z¥ = 4(¢h — o5") (€(ZV) (XY A YY)(€)—-
(XYAYYENZVE) +4(gh + roh?) (XY A YI)(ZY).

Bl

We use (u A v)z = (u,z)v — (v, z)u, so that constant curvature K

that corresponds to R(u,v)z = —K(u A v)z.



Riemannian structure of E Riemannian curvature of gy E K&hler metrics

II, THEORY OF CONNECTIONS 89

tangent to . By Proposition 7.2, I' is reducible to a connection
in Q. QED.
8. Holonomy theorem

We first prove the following result of Ambrose and Singer [1] by
applying Theorem 7.1.

Tueorem B.1.  Let P(M, G) be a principal fibve bundle, where M
is connected and paracompact. Let U be a connection in P, ) the eurvature
Jorm, ©(u) the holonomy group with reference point u € P and P(u) the
holonamy bundie through u of T, Then the Lie algebra of ®{u) is equal to
the subspace of o, Lie algebra of G, spanned by all elements of the form
Q.(X, Y), where v e P(u) and X and Y are avbitrary horizontal vectors at
2.

Figure: From “Kobayashi Nomizu"

Go geometry



Riemannian curvature of gy E

The Riemannian curvature at the zero section

Let us again consider the connections D** and D=D*"+ C. We
show the computations of the curvature in general form. Let us

denote
M,E
Reme = RV |

Since § =0 on Oy we have C A C |, =0 at any given point
0 € Oy of the zero section. It then follows by definition that

RP | =RP" +d%"C .
. M,E .
Recalling V""", the same reasons imply

5 B 1
Réwe | =RP 4+ dP(A- 5Rﬁ) |

o

* % * % kok ].
=RP” +dP"c+dP (A—ERf) |



Riemannian curvature of gy E

Now, X((¢, Y),) = (X, Y), + (£, 7Dy Y), and hence,
VX,Y,Z,W € TE,
(D**XCy)Z lo = D**X(CyZ) — Cy(D**XZ) lo
=a(X,Y).Z"+a(X,Z2) Y+ c1(Y,2) X'+
+ (Y, Z) XY+ b(X,Y) . Z" +b(X,Z),Y".

Here, a = 3, b= b|0, etc, just as for all other scalar functions —
we recall, ;€292 = —ae??1, a=2¢], b=2p) = —cp. Then
@ ox,vz |, =

= (D"xCy)Z —(D*"yCx)Z - Cx.viZ |,

= aX,2).Y"—aY,Z) X"+ (Y, 2) X" — (X, 2),Y"

+2b(X,Z), Y —2b(Y,Z).X".



Riemannian curvature of gy E

Since

Dx(RY(Y,2)) |, = m*Dx(7*RE(Y, 2)¢) |,
= (7" Dyn*RE(Y, Z))¢ + m*RE(Y, Z)m* D& |,
= RE(Y,Z2)XV
(with notation slightly abbreviated), we then have
(DxRSy)Z |, = Dx(RE(Y,Z))—RE(Y,DxZ) |, = RE(Y,Z)X"
and gM,E(EY(A(X’Z))7 W) lo —
= Y(gM,E(A(X7 Z), W)) - gM,E(A(X? Z), 5Y W) lo
1
= EY(e24p2(<'R£(X7 W)? Z>E =+ <R£(Z7 W)’X>E)) lo

— %ez‘”((RE(X, W)Y, Z), + (RE(Z, W)Y", X),).



Riemannian curvature of gy E

Finally

1
gue(dP(A= SREO(X, V) Z, W) |, =

~ 1 - 1
= gM,E(DX(A - ERg)Y Z— DY(A - ERg)X Z, W) lo

~ 1 ~ 1
= gue(Dx((A— 5735)(5/, Z)) — Dy ((A- ERg)(Xyz)), W),
1
— 5e2«’2(<RE(Y, W)XY,Z), + (RE(Z, W)X", Y),
- <RE(Y72)XV’ W)E - <RE(X7 W)YV7Z>E
—(RE(Z,W)Y¥, X), + (RE(X,Z2)Y", W),) .
Letting R*M.£(X,Y,Z, W) =g, .(R®E(X,Y)Z, W), we may
deduce a set of formulas. First recall that

*k

RP™ — 7*RM g n*RE .



Riemannian curvature of gy E

Theorem
Let x € M, o € Oy C E with (o) = x. Then at point o

Rgl\/l E(X Yh Zh Wh) _ 62¢1< *R),(V’(Xh, Yh)Zh, Wh)/\/l
RME(X", YR Zh W) =0

RfM,E(Xh, Yh zv, WV) _ 62<p2<ﬂ_*R)I<:_(Xh’ Yh)Zv’ WV>E
Ro™E(XP, YV, ZM W) = ae? (X", ZM) (Y, WY) +

1
+ §e2“"2 (m*RE(X", ZM)Yyv, wY),

RfME(X yY, Zh Why = &2 (r*RE(Zh, wh)Xx", YY),
RoME(XY,YY, 2, W) =0

REWE (X V¥, 7V W) = 0

RS“E(XY, YV, ZY, W) = —2be¥2 (X", W") (Y, Z"),

_<Xv7 ZV>E<Y‘/’ Wv)E)'



Riemannian curvature of gy E

Recall E has rank k and M has dimension m.
In the following it is a remarkable surprise that the curvature of Df
has completely disappeared.

Theorem
The Ricci tensor ric®™.£ (X, Y) = tr R®.( , X)Y and the scalar
curvature Scal®M.E = tr ricBm.E satisfy (a = a|,, b= by, as well
8m.E lo lo
as with all other scalar functions):
ricg £ (X", Wh) = ricM(xh, wh) — ake?(e1=22) (xh why
ricg" (Xhwy=0
ricg £ (XY, WY) = (2b(1 — k) — am)(X, W),

and also at o

Scalgh = e 2718calM + e7292(2bk(1 — k) — 2akm).



Riemannian curvature of gy E

Corollary ( “Einstein test”)

If the Riemannian manifold (E,g,, ) is Einstein, hence
satisfying ric®™.€ = )\EgMYE, then M is Einstein say with Einstein
constant A" and at o we have

A"e2227201 4 a(m — k) + 2b(k — 1) = 0.
Moreover

A" =(2b(1 — k) — am)e2#2

—\"e"201 _ gke=2%2,



Riemannian curvature of gy E

The R,%M’E generate a Lie subalgebra of the orthogonal Lie algebra
of T,E. (Holonomy C o(m + k) = N2R™*k))
There are three types of operators REM’E(X, Y):

e2 1 RM(xh yh) 0
[ 0 e22RE(Xh yh) }
0 —B(X" YY)
Loy 0]

B(XP, YY) = 26271 (X"} @ (V) + §e2P(RE(XP, )Y, )
and

E?

e2?2(RE(, )XY, YY), 0
0 4ghe*2 (XYY A (YY)

(-7 is the adjoint with respect to the non-weighted metric).



Riemannian curvature of gy E

By Ambrose-Singer these endomorphisms generate the local
holonomy algebra.

The flat connection again

Suppose D" is a flat connection on E —» M with the dimensions
m=dmM, m+ k=dimE, k =1k E. At a point 0 € Oy we
find the Riemannian curvature of g,, . and find in the most general
case, i.e. when both ¢/ (0), ¢5(0) # 0, the three types of
endomorphisms in o( ToE, g,, ;) ~ AN’R™* = A2R™ @ p & A2RK:

RM 0 0 —E¢ 0 0 .
[0 0] LE,-Q)Jr o} [ ]V”J’O"ﬁ'

0 e*Aef
The matrices Ef* = [5,’-’65],,5 and those in the middle generate the
subspace p of dimension mk.



Riemannian curvature of gy E

Since [p,p] = o(m) & o(k), we find the first part of the following
result.

Proposition

Let hol®M.E denote the whole holonomy Lie algebra.

(i) If ©4(0) # 0, then hol*M.E = o(m + k).

(ii) If ¢(0) = 0 # ©5(0), then holBmE D holM @ o(k).

(i) hot*m.e D holM, with equality if both o1, o are constant.



Kahler metrics

Hermitian tangent bundle with generalized Sasaki metric

Given any (Riemannian) manifold M, the generalized Sasaki almost
Hermitian structure consists of the g,, .-compatible almost
complex structure JY on the manifold £ = TM defined by

SV =eVB-e¥Bl
where ¢ = ¢ — 1 and the well-defined endomorphism
B:TTM — TTM = m*TM @ n*TM : BZ" =7, BZ' = 0.
(B cannot be defined on other vector bundles; it is the diagonal
group structure A C GL(m) x GL(m)). Notice:
otV =(e¥B—eYBNo(e¥B—e?Bf = —17u.

J¥ generalizes the case 1 = @p = 0, due to Sasaki.



Kahler metrics

Indeed we have an almost Hermitian structure:
gM,E(Jw 7Jw ):gM,E( ) )

It follows that the associated symplectic 2-form w? = Jqf/’_ngM’E
satisfies (we let 1) = o + 1)

(,&)E = eawo.

Proposition
For dim M > 1, the 2-form w¥ on E = TM is symplectic if and
only if ¢ is a constant.

Proof. _ B B

First d(e¥w®) = de¥ A w® + e¥dw®. Since D**w® = 0 we find

dw®(X, Y, Z) = (T2 (X, ¥), )+ (TP (Y, 2), X)+w*(TP7(Z,X), ).
Since TD**( , ) =7"RE(, )¢, we always have dw® = 0 by Bianchi identity. M



Kahler metrics

Now, in arXiv1609.03125, we have deduced when J¥ is integrable.
We found non trivial solutions — however, a particular case of a
result of V. Oproiu and N. Papaghiuc, cf. arXiv1609.03125.

In any dimension, the unique non-flat solutions are the tangent
disk bundles D,M = {u € TM : ||u||?> < ro} of a real base
manifold M of constant sectional curvature x # 0 with any
squared-radius rg € R* and metric satisfying e¥1~%2 = /1 + &r.
For a complete metric, M = S™ is a sphere (k > 0) and ry = +00.
Such disk bundles are also Kihlerian if we take 1) = 0 (i.e.

©1 = —p2). The metric is given by

. 1
gM,DM = 1 —|— KRF T gM @ \/ﬁﬂ-*gTM

where rp = —1/k if K < 0. And ryp = +00 otherwise.



Kahler metrics

By analogy with Bryant and Salamon, the metric is complete if
and only if the rays to infinity have infinite length:

n o q r 1
/OHdtHMYDMdt:/O Tl

The holonomy lies in the unitary Lie algebra u(m).
At the zero section we find

u(m) for m>2 and  su(2) for m=2.
We find the possible Einstein constant:
1
/\DM = E(m — 2)/4}.

The zero section Oy, can only tell us about the whole geometry of
E when we have J¥ parallel.



Go geometry

Metrics with G, holonomy

G2 manifolds are very active in String theory...
G2 := Aut O C SO(7) is a simplyconnected, compact, simple Lie
group of dimension 14.

A 7-dimensional manifold &£ carries a G, structure if it admits a
certain stable 3-form ¢. This 3-form yields a metric g4 such that ¢
becomes ¢(X,Y,Z) = (X -Y,Z)4 and each 7-dim T.& inherits
the structure of J(0).

Theorem (Fernandez-Gray)
Ve =0 iff dp=d*¢=0.

Famous example by R. Bryant and S. Salamon on A2 T*M — M
produces true complete holonomy Go.



Go geometry

In arXiv1401.7314 we study some generalizations of the metrics of
Bryant-Salamon on the vector bundle

E=NTM—M

of self-dual and anti-self-dual 2-forms.

M denotes an oriented Riemannian 4-manifold.

The constructed Go structures on E are parallel for positive scalar
curvature self-dual Einstein manifolds, this is, S* and CP?.

A change of orientation is ok, but in working with /\?|r one finds a
mirror construction for negative scalar curvature and finds an
unknown number of new examples of Riemannian 7-manifolds
with Go holonomy. In particular for the Einstein base M = H* and
the anti-self-dual #2, respectively, the real and complex hyperbolic
spaces.
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When trying to find the holonomy subgroup of Gy, the Lie theory
for those new symmetric spaces fails. The arguments of
Bryant-Salamon cannot be reproduced for ScalM < 0.

Now, our theory gives a general proof that the holonomy groups
are the whole Gy. (The study includes the Scal™ = 0 base, which
yields a different conclusion.)

Remark. Similar metrics on vector bundle manifolds with Gy
holonomy were also found by G. W. Gibbons, D. N. Page and
C. N. Pope, also with the bundles over S* and CP?2.

They too do not see the Scal™ < 0 cases.
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We have a manifold E = A2 T*M and a G metric gy In general.
We shall not be focused on the G, structure, the 3-form ¢, which
determines the metric.

Given an oriented orthonormal frame {e*, €, €®, e’} of T*M on an
open subset, we have a frame on E on the same open subset
defined by

el — % 4 67 €2 — % 1 57 &3 — o7 4 56

The metric g, on E = E4 = /\i T*M — M, as a vector bundle, is
such that {e!, e?, €3} is an orthonormal frame.

This implies e.g. r = |[e!||, = 3el(e1).
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We consider:

e A2 when the base manifold M is Einstein and self-dual (i.e. has
vanishing anti-self dual Weyl tensor W_ = 0).

e A2 when M is Einstein anti-self-dual (W, = 0).

The vector bundles Ey inherit a metric connection from the
Levi-Civita connection VM (this commutes with * operator).

It is easy to see the “Bryant-Salamon” metric on EL is a
spherically symmetric metric g,, . with certain weight functions:

%2
N ~ % C
By = \/28sr + &g, & ——2——1"g,
\/2&sr + ¢

where ¢y, ¢1 > 0 are constants and s = %Scal’w.
We keep the two constants ¢y, ¢1, although we may further
normalize...
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We already know the metric g,, . has holonomy inside G2 (i.e. ¢ is
parallel for the Levi-Civita connection itself induces).

Again, for Scal™ < 0 we are forced to restrict the study to the
open disk bundle of radius |/rg, where ryp = —¢;/2s,

DM ={e€E: |e|? < r}.

The spherically symmetric metric weights are given by

1 1
v1(r) = 1 log(2&3sr + &) wo(r) = 2 log(2&3sr + &) + log &.
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Then

2010 — g2 e202(0) — g2z
~2 ~2
, &s , &s
r)=m ————7- ry—m————
#1(r) 2(28sr + &) #2(r) 2(28sr + &)
and
_ Egs /

¢1(0) = 28 = —©5(0).

Regarding the famous coefficients of the map “C”, defined by
a=2¢), b=2ph=—cy, c1 = —2p;e*172¢2 we find at 0

~2

CyS
a:—b:c2:70 C]_:_S.

1
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Any holonomy G, manifold is Ricci flat (E. Bonan). In our case
this may be confirmed by the “Einstein test”.
Indeed, we have both

2b(1 — k) —am=—4(b+a)=0

and
1

Mo _ 207 05~—2 3
Ae — ake™*¥? =3sg 2 -3¢ ¢ =0.
5]
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We now write our main result for the metrics g,, . on N2 T*M if
s> 0and D, M if s <O0.

Theorem

For s # 0, the holonomy group of g,, . is the Lie group Ga.
For the proof...

Recall the decomposition of the curvature tensor of
4-manifolds under the Lie algebra 0(4) = 0(3) & 0(3). The
symmetric operator on 2-forms defined by

<R(ea A eﬂ)v ey A e5>M = _<RM(ea7 eﬁ)ew e5>M = c,yﬁ'yé
gives rise to an irreducible decomposition respecting /\i ® N

W+ + 513 I‘iC()

R = l“iCoJr W_ +5sl13 |~
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W = W4 + W_ is the Weyl tensor, traceless. The map ricg is the
traceless part of rict™. It follows s = %ScalM.

Now the curvature of the vector bundle E is given in the frame
(e', e?, e3) by

0 _p3 ,02
RE(e!, €2, %) = (€1, €2, €3)p where p=1| p? 0 —pt
-p* ot 0

In other words
REe — pkej — pjek’ Y cycle (ijk) = (123).

We may write again p, more precisely each pﬂr and p’ | as a linear
combination of the self-dual and anti-self dual 2-forms.
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Taking a dual frame of the e*, e® €°, e’, we find respective

2-vectors ey, e, €3, which verify e} (es ;) = 25}, el (ex;) =0,
Vi,j =1,2,3. Careful computations yield:

pilery)=-Rij  pilerj) =FR;  p(e—j)=+Rz.

Notice, for instance, Rjj = (Rej, €),,
If M is Einstein, equivalently, if rico = 0, then s is a constant.

M is self-dual if W = W,.. Self-dual and Einstein is the same as
W.=0 <« p =se , Vi=1,23.

Anti-self-duality corresponds to W = W_. Together with the
Einstein condition, that implies p+ = —se+
All together, the hypothesis is that p' = Fse'.



Go geometry
Now, we just have to prove dim hol®¥.E = 14 = dim G,.

By Ambrose-Singer, the holonomy is generated by those matrices
in 0(7) found earlier:

RgM,E (Xh7 Yh) —

_1
0 &2e, 2RE(XN, vh)
0 -B
g h yvy _
RM’E(X’Y)_[BT 0 ]

1 _
with B(X", Y¥) = ag2 (Xh) @ (Y¥)" + &3¢,
and

JRE(XD, )YV, ),

_1
Egal 2<RE( ’ )va YV>E 0

Rem.E(XV, YY) = [
0 2b83E, 2(XV) A(YV)
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Notice we may consider the horizontal lift of e; as well as the
vertical lift of e/, which we have denoted by 7*e’. Recall
(el,el), = (e, &), = &, Vi,j =1,2,3. We then conclude
various identities on the manifold E. First, in coherence with the
above,

1 1 1
§<RM(ek), ey = —5Rui = igﬂi(ei) = —sik

and hence RM(e,) = —seX (the horizontal lift, the pullback).
Second, in positive order (ijk),

(RE(ex)m*e’, 7€), = pX(ex) = F2s = F2s(n*e’ An*e)(er, €)).

Finally, the orthogonal maps R®M.(efl) and R®m.E (r*e!, n*e/),
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1
22 cok
—Ci'se 0

RgM’E(eI’J) = _1 . A
0 F2s83¢8, 2m*el A el
273k
~L%m 2
; : C5C, 2se 0
REme (vl mrel) = | T9OA L o,
0 —2SE§51 2n*e! A el

are the same:
&2 . .
j:N—ORgM’E(e,f) = RngE(w*e’,w*ef)
C1

and we have proved all these 6 maps generate a 3-dimensional
subspace.
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There is another 3-dimensional subspace of maps, non-vanishing
just in the 4 x 4-square, generated by the

1
RgM,E(e£) — [ okt RM(8<h, Yh) 8 ] '

They refer to W4 4+ s13 and do not vanish because s # 0.
(Sometimes W, or W_ do not vanish either.)
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We are left to prove the RngE(X”, Y") generate an 8-dimensional
H i * Af >
) E?

subspace. Let us take any a = 4,5,6,7. Letting ' = (n*e

we have:

REME (e, e, Z WY)
_1
&g, 2 (RE (eq, ZMmel, W),

N~

<ea,Zh>M<7r*ei, W"),

(
aty
(ZM(m*e', WY, F e*(en, ZM)(n*e/, W)

<2
= CL’?(Qea

2¢;
e/ (eq, ZM)(m ek, WY),).

Hence
~2

(26 AN F ey ek AN £ e,el A 9k)

1
=2
2c1
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Computing case by case we get four linearly independent
families of three similar 2-forms. Writting V,; = e“ A 0', we get
for instance

RgM,E(e4’ 71'*61) = 2\/41 + v72 :t V63
REM.E (e7, m€?) = 2Vip T Va1 + Vi3
RgM,E(e(),']r*e?’) = 2\/63 + V41 + V72

These forms are linearly dependent. In fact, each and all the
following matrices, corresponding to the four families, have rank 2:

2 F1 41 IR
-1 2 -1
-1 -1 2

F1 2 1
2 +1 1}

+1 1 2
+1 2 F1
1 F1 2

1 2 +1

2 1 F1
F1  +1 2

and therefore the curvature generates a subspace of dimension 8,
g.e.d.
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The case s = 0 implies constant 1, ©.

Recall the famous K3 surfaces are Kahler surfaces (4 real dim);
with the Calabi-Yau metric, they have a fixed orientation, are
non-flat, Ricci-flat and anti-self-dual.

Anti-self-duality occurs necessarily with every scalar flat Kahler
surface (A. Derdzinski).

K3 surfaces have thus holonomy SU(2).

K3 surfaces and quotients of the 4-torus by finite groups give us all
the compact spin Ricci-flat Kahler surfaces and hence anti-self-dual
4-manifolds (C. Lebrun).

The flat torus case being trivial, we proceed.

Theorem
For any K3 surface M, the Go metrics on E = /\i T*M have
holonomy SU(2) C Ga.

Proof.

Apply global formulas, since E is flat for s = 0 as we have seen. W



Go geometry

Resuming with Scal™ = 0. Let us stress we are now completely
sure the spaces

Dr07iH4 and Dro,JrH(% ’ (1)

with the metric g, ., have G2 holonomy.

Let us see a topological proof for the Bryant-Salamon metrics.
This third independent proof is, again, suitable only for the
positive Scal” cases.

Proposition

The Gy metric on N?> T*S* has holonomy equal to Go.



Go geometry

Proof.

A theorem of Bryant assures that if the holonomy group is
contained in G, and the metric does not admit parallel vector
fields, then the subgroup coincides with the whole group. Now if
E_ had a parallel vector field Y = Y" + YV for the Gy metric,
then this would restrict over the zero section Oy, to the sum of a
parallel vector field Y" and a parallel section Y. These fields
would have constant norm. But S* does not have non-vanishing
vector fields, nor it admits a non-degenerate 2-form field (an
almost-complex structure). Of course every self- or anti-self-dual
2-form is non-degenerate. |
Analogously, for CP?; because it does not admit a non-vanishing
vector field, nor a Kahler structure compatible with the
Fubini-Study metric and inducing the reversed orientation. It is
well-known that @2 is not even a complex manifold.
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